A Target Detection Method of Moving Objects at Airport Based on Streak Flow and Deep Learning
-
摘要: 针对当前基于视频图像的场面监视目标检测方法存在定位误差较大,识别准确率低等问题,建立一种结合目标运动信息的机场场面运动目标检测方法:利用倾向流法提取出运动目标在图像中的候选区域,对候选区域执行点池化操作以确定区域建议的边界,采用Inception结构构建一个浅层卷积神经网络,并使用该网络对区域建议中的航空器、车辆和人员进行识别.结合国内机场的监视视频,构建了一个包含4 938张图片的机场目标数据集,用于算法的训练和测试.结果 表明,运动目标提取的准确率达到94%以上,运动目标识别的Top-1准确率达到了97.23%,运动目标平均准确率达到86.23%.与3种深度学习目标检测算法相比,运动目标检测精度平均提升了39%.
点击查看大图
计量
- 文章访问数: 577
- HTML全文浏览量: 117
- PDF下载量: 1
- 被引次数: 0