A Predictive Model of Highway Accident Duration Driven by Text Data
-
摘要: 事故持续时间的预测是高速公路应急管理的基础,及时准确的事故持续时间预测可为道路疏导和组织救援提供可靠依据.针对道路交通事故信息及其异质性主要以自由流文本存在的问题,研究了基于文本数据的高速公路事故持续时间预测方法,可应用于以自然语言形式存在的任何信息文本.并在此基础上,构建V-Fisher有序聚类模型,结合多种文本分类算法,开展模型结果的对比分析.结果表明,与一般回归算法相比,V-Fisher有序聚类模型可更好的实现对事故持续时间的预测,且通过集成学习(SVR+LR)建立的分类模型准确率达到0.82,取得良好的预测效果.
点击查看大图
计量
- 文章访问数: 744
- HTML全文浏览量: 128
- PDF下载量: 8
- 被引次数: 0