留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

COVID-19在公交网络传播模型及防疫策略有效性分析

牟振华 李想 闫康礼 郭继杰

牟振华, 李想, 闫康礼, 郭继杰. COVID-19在公交网络传播模型及防疫策略有效性分析[J]. 交通信息与安全, 2021, 39(1): 111-117. doi: 10.3963/j.jssn.1674-4861.2021.01.0013
引用本文: 牟振华, 李想, 闫康礼, 郭继杰. COVID-19在公交网络传播模型及防疫策略有效性分析[J]. 交通信息与安全, 2021, 39(1): 111-117. doi: 10.3963/j.jssn.1674-4861.2021.01.0013
MOU Zhenhua, LI Xiang, YAN Kangli, GUO Jijie. An Analysis of COVID-19 Propagation Model in Public Transportation Networks and Effectiveness of Epidemic Prevention Strategies[J]. Journal of Transport Information and Safety, 2021, 39(1): 111-117. doi: 10.3963/j.jssn.1674-4861.2021.01.0013
Citation: MOU Zhenhua, LI Xiang, YAN Kangli, GUO Jijie. An Analysis of COVID-19 Propagation Model in Public Transportation Networks and Effectiveness of Epidemic Prevention Strategies[J]. Journal of Transport Information and Safety, 2021, 39(1): 111-117. doi: 10.3963/j.jssn.1674-4861.2021.01.0013

COVID-19在公交网络传播模型及防疫策略有效性分析

doi: 10.3963/j.jssn.1674-4861.2021.01.0013
基金项目: 

教育部人文社科基金项目 19YJC630124

详细信息
    通讯作者:

    牟振华(1983—),博士,副教授.研究方向:交通运输规划与管理.E-mail: mouzhenhua@sdjzu.edu.cn

  • 中图分类号: U495

An Analysis of COVID-19 Propagation Model in Public Transportation Networks and Effectiveness of Epidemic Prevention Strategies

  • 摘要: 城市公交系统是空气传播型病毒进行人际传播的重要潜在空间,研究病毒在公交系统中的传播,能精确的指导公交防疫策略的制定。基于双层公交网络模型,耦合出行规则和SEIR模型建立了公交网络传播模型,以某虚拟的区域空间和公交线网为背景,根据双层网络模型的特点,分析了公交车上及公交站点病毒传播的过程,制定宏观和微观2种防疫策略并分析效果。研究发现,公交出行会导致病毒大范围传播,公交车上和公交站点是最重要的传播环节。对公交防疫策略效果的分析中,宏观控制策略的切断公交线路比例φ1 >0.5或者停运公交站点比例 φ2 >0.4时,最终免疫人群比例会下降至0.3以下。微观调节策略则需要同时调整发车间隔 td < 4且满载率α < 50%,则最终免疫人群比例小于0.4,防控效果最显著。

     

  • 图  1  公交网络模型示意图

    Figure  1.  Bus network model

    图  2  粒子出行示意图

    Figure  2.  Particle travel

    图  3  有无公交情况下的感染结果

    Figure  3.  Infection results with/without public transportation

    图  4  不同出行概率的感染结果

    Figure  4.  Infection results with different travel probabilities

    图  5  公交节点感染人数占比

    Figure  5.  Proportion of infected people in bus nodes

    图  6  不同 pc值的感染人群比例曲线

    Figure  6.  Proportion curve of the infected population with different values pc

    图  7  不同发车间隔下的感染结果

    Figure  7.  Infection results at different departure intervals

    图  8  不同满载率下的感染结果

    Figure  8.  Infection results at different full load rates

    图  9  不同度公交站点上的累计感染人数

    Figure  9.  Number of infections in bus nodes of different degrees

    图  10  宏观控制策略效果

    Figure  10.  Macro-containment strategy effect

    图  11  最终免疫人群比例与满载率和发车间隔关系

    Figure  11.  Relationship among the proportion of final immune population, the full load rate, and the departure interval

  • [1] ZHANG Jinnong, ZHOU Luqian, YANG Yuqiong, et al. Therapeutic and triage strategies for 2019 novel coronavirus disease in fever clinics[J]. The Lancet Respiratory Medicine, 2020, 8 (3): 11-12. doi: 10.1016/S2213-2600(20)30071-0
    [2] XU Zhe, SHI Lei, WANG Yijin, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome[J]. The Lancet RespiratoryMedicine, 2020, 8(4): 420-422. doi: 10.1016/S2213-2600(20)30076-X
    [3] 中国疾病预防控制中心. 新型冠状病毒肺炎流行病学特征分析[J]. 中华流行病学杂志, 2020, 41(2): 145-151. doi: 10.3760/cma.j.issn.0254-6450.2020.02.003

    Chinese Center for Disease Control and Prevention. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases(COVID-19)in China[J]. Chinese Journal of Epidemiology, 2020, 41(2): 145-151. (in Chinese) doi: 10.3760/cma.j.issn.0254-6450.2020.02.003
    [4] 种鹏云, 尹惠. 交通运输传播新型冠状病毒肺炎的系统动力学仿真[J]. 交通运输工程学报, 2020, 20(3): 100-109. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202003013.htm

    ZHONG Pengyun, YIN Hui. System dynamics simulation on spread of COVID-19 by traffic and transportation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 100-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202003013.htm
    [5] 雷斌, 刘星良, 曹振, 等. COVID-19在城市轨道交通系统内的传播建模与预测[J]. 交通运输工程学报, 2020, 20(3): 139-149. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202003017.htm

    LEI Bin, LIU Xingliang, CAO Zhen et al. Modeling and forecasting of COVID-19 spread in urban rail transit system[J]. Journal of Traffic and Transportation Engineering, 2020, 20 (3): 139-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202003017.htm
    [6] 马昌喜, 王超, 郝威, 等. 突发公共卫生事件下应急定制公交线路优化[J]. 交通运输工程学报, 2020, 20(3): 89-99. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202003012.htm

    MA Changxi, WANG Chao, HAO Wei, et al. Emergency customized bus route optimization under public health emergencies[J]. Journal of Traffic and Transportation Engineering, 2020, 20(03): 89-99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202003012.htm
    [7] 鲍君忠, 秦莹, 王西召, 等. 基于Logistic模型的大型邮轮疫情预测分析[J]. 交通信息与安全, 2020, 38(2): 136-142+148. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202002020.htm

    BAO Junzhong, QIN Ying, WANG Xizhao, et al. A prediction and analysis of epidemic outbreaks on large cruise ships based on a logistic model[J]. Journal of Transport Information and Safety, 2020, 38(2): 136-142+148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202002020.htm
    [8] 刘文君, 何新华, 胡文发. 重大突发疫情对港口运营能力的影响研究[J]. 交通信息与安全, 2020, 38(2): 102-111+119. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202002016.htm

    LIU Wenjun, HE Xinhua, HU Wenfa. Impacts of major epidemic in public health emergencies on operational capacity of ports[J]. Journal of Transport Information and Safety. 2020, 38 (2): 102-111+119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202002016.htm
    [9] 周继彪, 马昌喜, 董升, 张敏捷. 新冠肺炎疫情下城市公共交通非常规防疫策略: 以宁波市为例[J]. 中国公路学报, 2020, 33(11): 1-10.

    ZHOU Jibiao, MA Changxi, DONG Sheng, et al. Unconventional prevention strategies for urban public transport in the COVID-19 epidemic: taking ningbo city as a case study[J]. China Journal of Highway and Transport, 2020, 33(11): 1-10. (in Chinese)
    [10] RUAN Zhongyuan, TANG Ming, LIU Zonghua. How the contagion at links influences epidemic spreading[J]. The European Physical Journal B, 2013(86): 149. doi: 10.1140/epjb/e2013-30914-9
    [11] SONG Chaoming, QU Zehui, BLUMM N, et al. Limits of predictability in human mobility[J]. Science, 2010(327): 1018-1021. http://bjsm.bmj.com/lookup/ijlink?linkType=ABST&journalCode=sci&resid=327/5968/1018&atom=%2Fbjsports%2F45%2F16%2F1272.atom
    [12] TANG Ming, LIU Zong, LI Baowen. Epidemic spreading by objective traveling[J]. Europhys Lett, 2009(87): 18005.
    [13] 阮中远. 复杂网络上的流行病传播[J]. 中国科学: 物理学、力学、天文学, 2020, 50(1): 98-117. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK202001008.htm

    RUAN Zhongyuan. Epidemic spreading in complex networks[J]. Scientia Sinica(Physica, Mechanica & Astronomica), 2020, 50(1): 98-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK202001008.htm
    [14] 茹小磊, 杨超, 严钢, 等. 应对突发大规模流行病的城市常规公交管控策略[J]. 中国公路学报, 2020, 33(11): 11-19. doi: 10.3969/j.issn.1001-7372.2020.11.003

    RU Xiaolei, YANG Chao, YAN Gang, et al. Control strategy of urban public transit in response to large-scale emergent epidemic[J]. China Journal of Highway and Transport. 2020, 33 (11): 11-19. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.11.003
    [15] COLIZZA V, PASTOR-SATORRAS R, VESPIGNANI A. Reaction-diffusion processes and metapopulation models in heterogeneous networks[J]. Nat Phys, 2007(3): 276-282. http://www.nature.com/articles/nphys560?error=cookies_not_supported&code=02f2cdd7-a776-42b1-8821-a8925e9329aa
    [16] 范如国, 王奕博, 罗明, 等. 基于SEIR的新冠肺炎传播模型及拐点预测分析[J]. 电子科技大学学报, 2020, 49(3): 369-374. https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX202003009.htm

    FAN Ruguo, WANG Yibo, LUO Ming, et al. SEIR-Based COVID-19 transmission model and inflection point prediction analysis[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(3): 369-374. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX202003009.htm
    [17] 张宇, 田万利, 吴忠广, 等. 基于改进SEIR模型的新冠肺炎疫情沿交通线路传播机制[J]. 交通运输工程学报, 2020, 20 (3): 150-158. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202003018.htm

    ZHANG Yu, TIAN Wanli, WU Zhongguang, et al. Transmission mechanism of COVID-19 epidemic along traffic routes based on improved SEIR model[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 150-158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202003018.htm
    [18] SMALL M, TSK C K. Small world and scale free model of transmission of SARS[J]. Intertional Journal of Bifurcation and Chaos, 2005, 15(5): 1745-1755. doi: 10.1142/S0218127405012776
    [19] 倪顺江. 基于复杂网络理论的病毒动力学建模与研究[D]. 北京: 清华大学, 2009.

    NI Shunjiang. Research on modeling of infectious disease spreading based on complex network theory[D]. Beijing: Tsinghua University, 2009. (in Chinese)
    [20] 缪超. 具有多感染率网络中的传播动力学及节点免疫策略[D]. 南京: 南京邮电大学, 2018.

    MIU Chao. Epidemic dynamics and node immunization strategy in a network with multiple infection rates[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2018. (in Chinese)
  • 加载中
图(11)
计量
  • 文章访问数:  643
  • HTML全文浏览量:  277
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-05
  • 刊出日期:  2021-02-28

目录

    /

    返回文章
    返回