留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于事故特征耦合影响的城市道路交通事故影响分析

何雅琴 邹家翠

何雅琴, 邹家翠. 基于事故特征耦合影响的城市道路交通事故影响分析[J]. 交通信息与安全, 2021, 39(1): 45-51, 63. doi: 10.3963/j.jssn.1674-4861.2021.01.006
引用本文: 何雅琴, 邹家翠. 基于事故特征耦合影响的城市道路交通事故影响分析[J]. 交通信息与安全, 2021, 39(1): 45-51, 63. doi: 10.3963/j.jssn.1674-4861.2021.01.006
HE Yaqin, ZOU Jiacui. A Traffic Impact Analysis of Urban-road Traffic Accidents Based on Coupling Influences of Accident Characteristics[J]. Journal of Transport Information and Safety, 2021, 39(1): 45-51, 63. doi: 10.3963/j.jssn.1674-4861.2021.01.006
Citation: HE Yaqin, ZOU Jiacui. A Traffic Impact Analysis of Urban-road Traffic Accidents Based on Coupling Influences of Accident Characteristics[J]. Journal of Transport Information and Safety, 2021, 39(1): 45-51, 63. doi: 10.3963/j.jssn.1674-4861.2021.01.006

基于事故特征耦合影响的城市道路交通事故影响分析

doi: 10.3963/j.jssn.1674-4861.2021.01.006
基金项目: 

国家自然科学基金项目 51408445

详细信息
    通讯作者:

    何雅琴(1982—),博士,副教授.研究方向:交通应急管理研究.Email: heyaqin@126.com

  • 中图分类号: U491.3

A Traffic Impact Analysis of Urban-road Traffic Accidents Based on Coupling Influences of Accident Characteristics

  • 摘要: 城市道路交通事故发生后,由于事故车辆占用车道,使得车辆通行的车道数目减少,道路的通行能力降低,造成排队和交通拥堵,对交通运行产生一定的影响。以双向6车道的城市道路为例,运用Vissim仿真软件模拟交通事故下的交通运行,分析车流量、占道类型、事故持续时间以及借道超车4种因素下的交通影响。结果表明,流量越大、事故持续时间越长、占道数目越多,事故对交通的影响越大。当流量达到3 400 veh/h(D级服务水平),占1个车道的车辆延误显著增加,直至流量达到4 000 veh/h时才逐渐趋于平稳,且占据车道2比占据车道1和占据车道3的延误要大;当流量达到1 900 veh/h(B级服务水平),占2条车道的车辆延误显著增加直至流量达到2 700 veh/h时才逐渐趋于平稳,占据车道1和3的车辆延误要小于占据车道1和2以及占据车道2和3的延误;在相同占道情况下,不同事故持续时间下的车辆延误随流量变化的趋势大体是一致的;当事故道路服务水平为D/E/F级,对向道路服务水平在A/B/C/D级时(事故占用内侧1个车道),以及当对向道路服务水平在A/B/C级时(事故占据内侧2个车道),进行借道超车均能有效减少事故路段车辆延误。

     

  • 图  1  交通事故模拟图

    Figure  1.  Traffic accident simulation

    图  2  不同流量和不同占道情况下的车辆平均延误

    Figure  2.  Average vehicle delay under different traffics and occupation conditions

    图  3  不同流量和不同事故时长下的车辆延误

    Figure  3.  Vehicle delay under different traffics and incident durations

    图  4  不同流量、不同占道情况及不同事故持续时间下的车辆平均延误

    Figure  4.  Average delay of vehicles under different traffics, occupation conditions, and incident durations

    图  5  借道超车仿真运行图

    Figure  5.  Simulation operation of tailgating and overtaking

    图  6  占据车道3时借道超车时的延误

    Figure  6.  Delay of tailgating and overtaking in lane 3

    图  7  占据车道2和3时借道超车时的延误

    Figure  7.  Delay of tailgating and overtaking in lanes 2 and 3

    表  1  仿真车流量取值

    Table  1.   Value of simulated traffic flow

    服务水平 A B C D E F
    交通量/(veh/h) 1 200 1 900 2 800 3 400 4 100 4 500
    1 500 2 300 3 100 3 700 4 200
    1 800 2 700 3 300 4 000 4 400
    下载: 导出CSV
  • [1] WATANABE K, AKAHANE H, WARITA H, et al. Identification of capacity balls and analysis of affectors of capacity on Tokyo Metropolitan Expressway; proceedings of the Proc[C]. 5th IntSymp on Highway Capacity and Quality of Service, F, 2006.
    [2] FELLENDORF M, VORTISCH P. Validation of the microscopic traffic flow model Vissim in different real-world situations[C]. Meeting of the Transportation Research Board. 2001.
    [3] CHUNG Y, PECKER W W. Spatiotemporal analysis of traffic congestion caused by rubbernecking at freeway accidents[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14 (3): 1416-1422. doi: 10.1109/TITS.2013.2261987
    [4] HE Yixuan. A traffic capacity model of lane occupation[J]. Applied Mechanics & Materials, 2014 (599-601) : 2083-2087.
    [5] FAN Y L, CHENG B C, CAO L L, et al. City occupancy and road capacity model[J]. Advanced Materials Research, 2014. http://www.scientific.net/AMR.1044-1045.1538
    [6] SAKAI T, YAMADA-KAWAI K, MATSU-MOTO H, et al. New measure of the level of service for basic expressway segments incorporating customer satisfaction[J]. Procedia-Social and Behavioral Sciences, 2011, 16 (0): 57-68. http://www.sciencedirect.com/science/article/pii/S187704281100975X
    [7] 张海军, 张珏, 杨晓光. 异常事件下高速道路交通状态的分析与仿真[J]. 交通运输工程学报, 2008: 8 (2): 116-121. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC200802026.htm

    ZHANG Haijun, ZHANG Jue, YANG Xiaoguang. Analysis and simulation of traffic state on expressway during incident[J]. Journal of Traffic and Transportation Engineering, 2008, 8(2): 116-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC200802026.htm
    [8] 陈昊, 陆建. 基于Vissim仿真的高速公路事故交通影响[J]. 长安大学学报: 自然科学版, 2015 (增刊1): 226-229. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL2015S1048.htm

    CHEN Hao, LU Jian. Traffic impact of expressway accidents based on Vissim simulation[J]. Journal of Chang'an University: Natural Science Edition, 2015 (S1): 226-229. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL2015S1048.htm
    [9] 汪滢. 城市快速路事故条件下通行能力的仿真研究[D]. 北京: 北京交通大学, 2014.

    WANG Ying. Study oncapacityof urban expresswayuse simulation under the condition of traffic accident[D]. Beijing: Beijing Jiaotong University, 2014. (in Chinese)
    [10] 程学庆, 唐瑞雪, 朱海, 等. 基于Vissim的高速公路交通事件仿真及数据处理[J]. 交通运输工程与信息学报, 2010, 8 (4): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC201004003.htm

    CHENG Xueqing, TANG Ruixue, ZHU Hai, et al. Simulation and data processing of highway traffic incident based on VISSIM[J]. Journal of Transportation Engineering and Information, 2010, 8 (4): 14-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC201004003.htm
    [11] 刘伟铭, 梁雪. 交通事故下高速公路有效通行能力分析与估算[J]. 科学技术与工程, 2018, 18 (18): 112-117. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201818017.htm

    LIU Weiming, LIANG Xue. Analysis and estimation on expressway actual capacity under traffic accidents[J]. Science Technology and Engineering, 2018, 18 (18): 112-117. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201818017.htm
    [12] 施俊庆. 交通事件影响下的城市路网拥堵特性及控制方法研究[D]. 南京: 东南大学, 2014.

    SHI Junqing. Studies on characteristics and control methods of urban road network congestion affected by traffic incidents[D]. Nanjing: Southeast University, 2014. (in Chinese)
    [13] 何雅琴, 容煜伦, 柳祖鹏. 基于车速比的城市交通事故交通影响程度评价[J]. 公路交通科技, 2019, 36 (5): 91-97. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201905013.htm

    HE Yaqin, RONG Yulun, LIU Zupeng. Evaluation of traffic influence degree of urban traffic accident based on speed ratio[J]. Journal of Highway and Transportation Research and Development, 2017, 29 (5): 140-146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201905013.htm
    [14] 游月省. 交通事故下城市快速路通行能力及改善措施研究[D]. 西安: 长安大学, 2014.

    YOU Yuexing. The research of the urban expressway capacity and improvement measures after traffic accidents[D]. Xi'an: Chang'an University, 2014. (in Chinese)
    [15] 于玲, 荚丝雨, 孙宝芸. 不同车道被占用时通行能力的影响因素分析[J]. 中外公路, 2019, 39 (1): 287-291. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201901062.htm

    YU Ling, JIA Siyu, SUN Baoyun. Analyis of influencing factors of traffic capacity when different lanes are occupied[J]. Journal of China & Foreign Highway, 2019, 39(1): 287-291. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201901062.htm
    [16] 张小安. 交通事故条件下的交通流仿真研究[D]. 广州: 广州大学, 2017.

    ZHANG Xiaoan. Research on traffic flow simulation under the traffic accident condition[D]. Guangzhou: Guangzhou University, 2017. (in Chinese)
    [17] 王炜. 交通工程学[M]. 南京, 东南大学出版社, 2011.

    WANG Wei. Traffic Engineering[M]. Naijing, Southeast University Press, 2011. (in Chinese)
    [18] 王文博, 周继彪, 陈红, 等. 基于VISSIM仿真的事故路段通行能力估算方法[J]. 公路交通科技, 2015, 32 (12): 120-127. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201512020.htm

    WANG Wenbo, ZHOU Jibiao, CHEN Hong et al. A simulation method for capacity in traffic accident section based on Vissim[J]. Journal of Highway and Transportation Research and Development, 2015, 32 (12): 120-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201512020.htm
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  698
  • HTML全文浏览量:  426
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-10
  • 刊出日期:  2021-02-28

目录

    /

    返回文章
    返回