留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数据驱动的人机混驾多车协同控制算法

王会鲜 李波 郑洪江 陈伟

王会鲜, 李波, 郑洪江, 陈伟. 基于数据驱动的人机混驾多车协同控制算法[J]. 交通信息与安全, 2021, 39(1): 76-86. doi: 10.3963/j.jssn.1674-4861.2021.01.009
引用本文: 王会鲜, 李波, 郑洪江, 陈伟. 基于数据驱动的人机混驾多车协同控制算法[J]. 交通信息与安全, 2021, 39(1): 76-86. doi: 10.3963/j.jssn.1674-4861.2021.01.009
WANG Huixian, LI Bo, ZHENG Hongjiang, CHEN Wei. A Multi-vehicle Cooperative Control Algorithm Based on Data-Driven Adaptive Control Strategy for Heterogeneous Human-driven and Autonomous Vehicles[J]. Journal of Transport Information and Safety, 2021, 39(1): 76-86. doi: 10.3963/j.jssn.1674-4861.2021.01.009
Citation: WANG Huixian, LI Bo, ZHENG Hongjiang, CHEN Wei. A Multi-vehicle Cooperative Control Algorithm Based on Data-Driven Adaptive Control Strategy for Heterogeneous Human-driven and Autonomous Vehicles[J]. Journal of Transport Information and Safety, 2021, 39(1): 76-86. doi: 10.3963/j.jssn.1674-4861.2021.01.009

基于数据驱动的人机混驾多车协同控制算法

doi: 10.3963/j.jssn.1674-4861.2021.01.009
基金项目: 

国家重点研发计划项目 2018YFB0105205

湖北省技术创新重大项目 2018AAA059

详细信息
    作者简介:

    王会鲜(1980—),博士,讲师.研究方向:V2X,智能网联协同控制.E-mail:huixianwang@lixin.edu.cn

    通讯作者:

    陈伟(1963—),博士,教授. 研究方向:智慧交通,智能运输系统信号与控制、宽带无线通信与认知无线电等.E-mail:greatchen@whut.edu.cn

  • 中图分类号: U491.1

A Multi-vehicle Cooperative Control Algorithm Based on Data-Driven Adaptive Control Strategy for Heterogeneous Human-driven and Autonomous Vehicles

  • 摘要: 针对多车协同控制系统中,传统控制算法需要准确获取系统中与驾驶员驾驶行为相关的参数以及与车辆系统动力学相关参数等问题,提出基于数据驱动的自适应动态规划控制算法。以有人与无人驾驶车辆混行的多车协同控制系统为研究对象,通过分析系统的横纵向控制模型,推导出系统状态方程,采用递推数值方法在线逼近最优解,并通过对最优反馈控制矩阵进行优化求解,得到最优控制输入。该算法简化了系统的控制输入参数,仅仅利用V2X通信获得的车辆的前轮转角以及车辆期望的纵向加速度作为控制输入,即可实现无人驾驶车辆的优化控制。基于Carsim和Simulink进行联合仿真测试验证,结果表明,该算法控制参数简单、收敛速度快、控制精度高、适应性强,能够控制无人驾驶车辆在多车系统中保持期望的车速并且与前车保持期望的车间距,同时在任意曲率道路上行驶时与车道中心线之间的横向误差趋于0。

     

  • 图  1  人机混驾组成的多车协同控制

    Figure  1.  Multi-vehicle cooperative control consisting of manned and unmanned vehicles

    图  2  横向误差计算原理示意图

    Figure  2.  Calculation principle of the lateral and heading errors

    图  3  数据驱动的自适应动态规划控制算法

    Figure  3.  Data-driven adaptive dynamic programming-control algorithm

    图  4  螺旋型道路下的无人驾驶车横向控制仿真结果

    Figure  4.  Simulation results of the lateral control of autonomous vehicles on spiral roads

    图  5  S型道路下的无人驾驶车横向控制仿真结果

    Figure  5.  Simulation results of the lateral control of autonomous vehicles on S-Roads

    图  6  人机混驾多车协同控制系统行驶轨迹

    Figure  6.  Trajectory of the multi-vehicle cooperative-control system

    图  7  人机混驾车辆车速和车间距随时间的变化关系

    Figure  7.  Trajectory of the velocity and headway under the lateral and longitudinal integrated control scene

    图  8  车辆横向误差和横摆角随时间的变化关系

    Figure  8.  Trajectory of the lateral error and yaw angle under the lateral and longitudinal integrated control scene

    表  1  人机混驾多车协同控制机制符号

    Table  1.   Notations for the multi-vehicle cooperative control strategy

    符号 符号意义 上/下标意义
    e1e2 车辆误差 1-横向误差
    2-航向误差
    $ \dot \varphi $ 横摆角速度/(rad/s)
    $ h_{i}^{*} $ 制动距离/m i-车辆
    $h_{i}$ 第i和第i-1辆车之间的车间距/m i-车辆
    $ v_{i}^{*}$ 期望车速(m/s) i-车辆
    $ v_{\max }$ 最大车速(m/s)
    $h_{\text {stop }} $ 有人驾驶车辆制动距离/m
    K 反馈增益矩阵
    $\tau_{i} $ 最小车头时距/s i-车辆
    T 采样时间/s
    $ \varepsilon $ 阈值
    $ v_{0}^{i}$ 初始速度(m/s) i-车辆
    $\boldsymbol{A}, \boldsymbol{B} $ 系统状态矩阵
    $ \delta$ 车辆的前轮转角/(°)
    a 车辆期望的纵向加速度(m/s)
    下载: 导出CSV

    表  2  人机混驾多车协同控制系统初始化参数设置

    Table  2.   Initialization parameters of the multi-vehicle cooperative-control system

    参数 含义/单位 数值
    $h_{1}^{*}, h_{2}^{*} $ 第1/2条直道上的期望车头间距/m 24.56, 29
    $ v_{1}^{*}, v_{2}^{*} $ 第1/2条直道上的期望车速(m/s) 15.56, 20
    $ v_{\max }$ 最大车速(m/s) 30
    $ h_{\text {stop }}$ 有人驾驶车辆制动距离/m 8
    $ h_{3}^{*}, h_{5}^{*}$ 第3/5辆无人驾驶车的制动距离/m 9, 9
    $ \tau_{3}, \tau_{5}$ 第3/5辆无人驾驶车最小车头时距/s 1, 1
    $ \Delta T$ 米样时间/s 0.05
    $ \varepsilon$ 阈值 0.01
    $v_{0}^{1}, v_{0}^{2} $ 第1/2辆车的初始速度/(m/s) 15.56, 10
    $v_{0}^{3}, v_{0}^{4}, v_{0}^{5} $ 第3/4/5辆车的初始速度/(m/s) 8, 6, 4
    $h_{0}^{2} $ 第2辆车与第1辆车初始间距/m 20
    $ h_{0}^{3}$ 第3辆车与第2辆车初始间距/m 10
    $h_{0}^{4}$ 第4辆车与第3辆车初始间距/m 10
    h05 第5辆车与第4辆车初始间距/m 10
    下载: 导出CSV
  • [1] ERSAL T, KOLMANOVSKY I, MASOUD N, et al. Connected and automated road vehicles: State of the art and future challenges[J]. Vehicle System Dynamics, 2020, 58(5): 672-704. doi: 10.1080/00423114.2020.1741652
    [2] DEY K C, YAN L, WANG X, et al. A review of communication, driver characteristics, and controls aspects of cooperative adaptive cruise control(CACC)[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(2): 491-509. doi: 10.1109/TITS.2015.2483063
    [3] XIAO L, GAO F. Practical string stability of platoon of adaptive cruise control vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1184-1194. doi: 10.1109/TITS.2011.2143407
    [4] 韩璐. 基于鲁棒自适应控制的车辆领航编队控制方法研究[D]. 北京: 北京交通大学, 2015.

    HAN Lu. Research on vehicle formation control based on robust adaptive control algorithm[D]. Beijing: Beijing Jiaotong University, 2015. (in Chinese)
    [5] DING J, PENG H, ZHANG Y, et al. Penetration effect of connected and automated vehicles on cooperative on-ramp merging[J]. IET Intelligent Transport Systems, 2020, 14(1): 56-64. doi: 10.1049/iet-its.2019.0488
    [6] LI Yongfu, ZHANG Li, ZHENG Hong, et al. Evaluating the energy consumption of electric vehicles based on car-following model under non-lane discipline[J]. Nonlinear Dynamics, 2015(82): 629-641. http://smartsearch.nstl.gov.cn/paper_detail.html?id=7e0e18c866cda534db079396ed2e94f3
    [7] KIM S G, TOMIZUKA M, CHENG K H. Smooth motion control of the adaptive cruise control system by a virtual lead vehicle[J]. International Journal of Automotive Technology, 2012, 13(1): 77-85. doi: 10.1007/s12239-012-0007-6
    [8] MILANES V, SHLADOVER S E, SPRING J, et al. Cooperative adaptive cruise control in real traffic situations[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(1): 296-305. doi: 10.1109/TITS.2013.2278494
    [9] ONCU S, PLOEG J, VAN D W N, et al. Cooperative adaptive cruise control: Network-aware analysis of string stability[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(4): 1527-1537. doi: 10.1109/TITS.2014.2302816
    [10] PLOEG J, SCHEEPERS B T M, NUNEN V, et al. Design and experimental evaluation of cooperative adaptive cruise control[C]. 14th International IEEE Conference on Intelligent Transportation Systems (ITSC). Washington, DC, USA: IEEE, 2011.
    [11] ENGLUND C, CHEN L, PLOEG J, et al. The grand cooperative driving challenge 2016: Boosting the introduction of cooperative automated vehicles[J]. IEEE Wireless Communications, 2016, 23(4): 146-152. doi: 10.1109/MWC.2016.7553038
    [12] GE J I, OROSZ G. Optimal control of connected vehicle systems[C]. 53rd IEEE Conference on Decision and Control. Los Angeles, California, USA: IEEE, 2014.
    [13] STANGER T, RE L D. A model predictive cooperative adaptive cruise control approach[C]. American Control Conference, Washington, D.C. USA: IEEE, 2013
    [14] CAO W J, MUKAI M, KAWABE T, et al. Cooperative vehicle path generation during merging using model predictive control with real-time optimization[J]. Control Engineering Practice, 2015(34): 98-105. http://www.sciencedirect.com/science/article/pii/S0967066114002408
    [15] DESJARDINS C, CHAIB-DRAA B. Cooperative adaptive cruise control: A reinforcement learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12 (4): 1248-1260. doi: 10.1109/TITS.2011.2157145
    [16] MASATO ABE. Vehicle handling dynamics: theory and application[M]. India: Butterworth-Heinemann Illustration, 2015.
    [17] GAO W, JIANG Z P, OZBAY K. Data-driven adaptive optimal control of connected vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(5): 1122-1133. http://ieeexplore.ieee.org/document/7219749
    [18] BERTSEKAS D P. Dynamic programming and optimal control. Vol. 1, 4th Ed. Belmont, MA: Athena scientific, 2017.
    [19] LIU D, YU W W, BALDI S, et al. A switching-based adaptive dynamic programming method to optimal traffic signaling[J]. IEEE Transactions on Systems, 2020, 50(11): 4160-4170. http://www.researchgate.net/publication/335007289_A_Switching-Based_Adaptive_Dynamic_Programming_Method_to_Optimal_Traffic_Signaling
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  522
  • HTML全文浏览量:  375
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-23
  • 刊出日期:  2021-02-28

目录

    /

    返回文章
    返回