留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于轨迹数据的道路客运班车停留站点位置提取方法

李军 解超 王林 高中灵

李军, 解超, 王林, 高中灵. 基于轨迹数据的道路客运班车停留站点位置提取方法[J]. 交通信息与安全, 2021, 39(4): 60-67. doi: 10.3963/j.jssn.1674-4861.2021.04.008
引用本文: 李军, 解超, 王林, 高中灵. 基于轨迹数据的道路客运班车停留站点位置提取方法[J]. 交通信息与安全, 2021, 39(4): 60-67. doi: 10.3963/j.jssn.1674-4861.2021.04.008
LI Jun, JIE Chao, WANG Lin, GAO Zhongling. A Method for Extracting Regular Bus Parking Stops of Road Passenger Transport Based on Trajectory Data[J]. Journal of Transport Information and Safety, 2021, 39(4): 60-67. doi: 10.3963/j.jssn.1674-4861.2021.04.008
Citation: LI Jun, JIE Chao, WANG Lin, GAO Zhongling. A Method for Extracting Regular Bus Parking Stops of Road Passenger Transport Based on Trajectory Data[J]. Journal of Transport Information and Safety, 2021, 39(4): 60-67. doi: 10.3963/j.jssn.1674-4861.2021.04.008

基于轨迹数据的道路客运班车停留站点位置提取方法

doi: 10.3963/j.jssn.1674-4861.2021.04.008
基金项目: 

国家自然科学基金项目 41971355

详细信息
    作者简介:

    李军(1979—), 博士, 高级工程师.研究方向: 综合交通运输理论与技术.E-mail: leejun@cttic.cn

    通讯作者:

    王林(1980—), 博士, 正高级工程师.研究方向: 交通时空大数据获取、分析与应用.E-mail: wanglin@cttic.cn

  • 中图分类号: U495

A Method for Extracting Regular Bus Parking Stops of Road Passenger Transport Based on Trajectory Data

  • 摘要: 识别并提取道路客运班车停留站点的位置, 可为道路客运的客运站站址优化、定制出行乘降站点设置、出行信息服务等提供依据和支持, 然而当前获取班车停留站点位置的方法存在成本高、周期长的问题。通过分析道路客运班车停留轨迹数据的典型特征, 以班车轨迹数据为数据源, 基于DBSCAN算法检测位于停留站点的点簇进而提取停留站点位置。同时, 针对DBSCAN算法具有高时间复杂度的问题, 通过建立格网索引对算法进行了改进。基于京津冀区域的136条道路客运班线的班车轨迹数据进行了实证分析, 结果表明: 改进DBSCAN算法提高了算法执行效率, 平均执行时间减少了59.72%, 且所生成的班车停留站点数量与传统算法基本一致; 在提取得到的282个班车停留站点中, 256个为真实的班车停留站点, 班车停留站点提取的正确率为90.78%。

     

  • 图  1  班车轨迹点的空间分布

    Figure  1.  Spatial distribution of regular bus trajectories

    图  2  车辆定位误差

    注:根据《汽车、挂车及汽车列车外廓尺寸、轴荷及质量限值》的规定,车辆高度限制为4 m,宽度限制为2.55 m,故取2.55 m为车辆宽度

    Figure  2.  Position error of vehicles

    图  3  轨迹数据漂移特征

    Figure  3.  Drift characteristic of trajectory data

    图  4  漂移数据处理方法

    Figure  4.  Processing method of drift data

    图  5  空间格网索引

    Figure  5.  Spatial grid index

    图  6  京津冀区域在线班车1 h的轨迹数据分布

    Figure  6.  Distribution of one-hour online regular bus trajectories in the Beijing-Tianjin-Hebei region

    图  7  班车停留站点提取过程

    Figure  7.  Extraction process of regular bus-parking stops

    图  8  改进算法的效率分析

    Figure  8.  Efficiency analysis of the improved algorithm

    图  9  班车停留站点与卫星影像图的匹配效果

    Figure  9.  Superimposed effect of regular bus parking stops in satellite images

    表  1  班车轨迹数据示例

    Table  1.   Samples of regular bus trajectories

    车牌号码 定位时间 经度/(°) 纬度/(°) 速度/(km/h) 方向/(°)
    京AD6*** 2018-05-02 T09:30:09 112.280 17 29.221 87 60 156
    津A67*** 2018-05-10 T12:01:15 102.181 93 38.117 19 70 80
    冀A59*** 2018-05-09 T17:30:11 101.171 83 39.119 23 65 197
    下载: 导出CSV
  • [1] LI Jun, LI Qingqi, ZHU Yan, et al. An automatic extraction method of coach operation information from historical trajectory data[J]. Journalof Advanced Transportation, 2019(1): 1-15. http://downloads.hindawi.com/journals/jat/2019/3634942.pdf
    [2] YIN Ping, MU Lan. Modular capacitated maximal covering location problem for the optimal siting of emergency vehicles[J]. Applied Geography, 2012(34): 247-254. http://www.onacademic.com/detail/journal_1000035350179110_4cf5.html
    [3] 刘旭, 陈云波, 施昆, 等. 结合Canopy-k-means算法和出租车轨迹数据的公交车站预测方法[J]. 测绘通报, 2018(11): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201811013.htm

    LIU Xu, CHEN Yunbo, SHI Kun, et al. Bus stations prediction based on Canopy-k-means from taxi GPS data[J]. Bulletin of Surveying and Mapping, 2018(11): 63-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201811013.htm
    [4] 吴华意, 黄蕊, 游兰, 等. 出租车轨迹数据挖掘进展[J]. 测绘学报, 2019, 48(11): 1341-1356. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201911002.htm

    WU Huayi, HUANG Rui, YOU Lan, et al. Recent progress in taxi trajectory data mining[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1341-1356. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201911002.htm
    [5] 林鹏飞, 翁剑成, 尹宝才, 等. 基于网约车轨迹数据的城市路网宏观运行质量评价方法[J]. 交通信息与安全, 2019, 37(6): 70-78. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201906010.htm

    LIN Pengfei, WENG Jiancheng, YIN Baocai, et al. An evaluation method of macroscopic operation quality of urban road network based on data of online car-hailing trajectory[J]. Journal of Transport Information and Safety, 2019, 37(6): 70-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201906010.htm
    [6] TANG Kun, CHEN Shuyan, LIU Zhiyuan. Citywide spatial-temporal travel time estimation using big and sparse trajectories[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(12): 4023-4034. doi: 10.1109/TITS.2018.2803085
    [7] RONG Huigui, WANG Zepeng, ZHENG Hui, et al. Mining efficient taxi operation strategies from large scale geo-location data[J]. IEEE Acess, 2017(5): 25623-25634. http://www.onacademic.com/detail/journal_1000039994589110_746b.html
    [8] 付鑫, 孙茂棚, 孙皓. 基于GPS数据的出租车通勤识别及时空特征分析[J]. 中国公路学报, 2017, 30(7): 134-143. doi: 10.3969/j.issn.1001-7372.2017.07.017

    FU Xin, SUN Maopeng, SUN Hao. Taxi commute recognition and temporal-spatial characteristics analysis based on GPS data[J]. China Journal of Highway and Transport, 2017, 30(7): 134-143. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.07.017
    [9] 唐炉亮, 郑文斌, 王志强, 等. 城市出租车上下客的GPS轨迹时空分布探测方法[J]. 地球信息科学学报, 2015, 17(10): 1179-1186. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201510007.htm

    TANG Luliang, ZHENG Wenbing, WANG Zhiqiang, et al. Space time analysis on the pick-up and drop-off of taxi passengers based on GPS big data[J]. Journal of Geo-information Science, 2015, 17(10): 1179-1186. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201510007.htm
    [10] GUI Z, YU H. Mining traffic hot spots from massive taxi trace[J]. Journal of Computational Information Systems, 2014, 10(7): 2751-2760.
    [11] QU Zhaowei, WANG Xin, SONG Xianmin, et al. Location optimization for urban taxi stands based on taxi GPS trajectory big data[J]. IEEE Access, 2019(7): 62273-62283. http://ieeexplore.ieee.org/document/8713568/
    [12] ZHANG Desheng, HE Tian, LIN Shan, et al. Taxi-passengerdemand modeling based on big data from a roving sensor network[J]. IEEE Transactions on Big Data, 2017(3): 362-374. http://ieeexplore.ieee.org/document/7740911/
    [13] 孙超, 张红军, 陈小鸿. 基于多源浮动车数据融合的道路交通运行评估[J]. 同济大学学报(自然科学版), 2018, 46(1): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201801008.htm

    SUN Chao, ZHANG Hongjun, CHEN Xiaohong. Road traffic operation assessment based on multi-source floating car data fusion[J]. Journal of Tongji University(Natural Science Edition), 2018, 46(1): 46-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201801008.htm
    [14] CORTÉS CE, CIBSOM J CSCHWENDER A, et al. Commercial bus speed diagnosis based on GPS-monitored data[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(4): 695-707. doi: 10.1016/j.trc.2010.12.008
    [15] 李军, 秦其明, 游林, 等. 利用浮动车数据提取停车场位置[J]. 武汉大学学报(信息科学版), 2013, 38(5): 599-603. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201305021.htm

    LI Jun, QIN Qiming, YOU Lin, et al. Parking lot extraction method based on floating car data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 599-603. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201305021.htm
    [16] JIANG Zhoutong, CHEN Xiqun, OUYANG Yanfeng. Traffic state and emission estimation for urban expressways based on heterogeneous data[J]. Transportation Research Part D: Transport and Environment, 2017(53): 440-453. http://oldmypage.zju.edu.cn/fck_filebrowser.php?cmd=download&id=704300
    [17] DRAIJER G, KALFS N, RERDOK J. Global positioning system as data collection method for travel research[J]. Transportation Research Record Journal of the Transportation Research Board, 2000(1): 147-153.
    [18] TANG Jinjun, LIU Fang, WANG Yinhai, et al. Uncovering urban human mobility from large scale taxi GPS data[J]. Physica A: Statistical Mechanics and its Applications, 2015, 438(11): 140-153. http://www.onacademic.com/detail/journal_1000038125306910_25e3.html
    [19] LI Jun, QIN Qiming, XIE Chao, et al. Integrated use of spatial and semantic relationships for extracting road networks from floating car data[J]. International Journal of Applied Earth Observation and Geoinformation, 2012(19): 238-247. http://www.onacademic.com/detail/journal_1000035625390410_e097.html
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  492
  • HTML全文浏览量:  306
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-30

目录

    /

    返回文章
    返回