留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机场群共用航路点的航班排序模型及算法

王莉莉 林雍雅

王莉莉, 林雍雅. 机场群共用航路点的航班排序模型及算法[J]. 交通信息与安全, 2021, 39(5): 93-99,136. doi: 10.3963/j.jssn.1674-4861.2021.05.012
引用本文: 王莉莉, 林雍雅. 机场群共用航路点的航班排序模型及算法[J]. 交通信息与安全, 2021, 39(5): 93-99,136. doi: 10.3963/j.jssn.1674-4861.2021.05.012
WANG Lili, LIN Yongya. Aircraft Sequencing Modeling and Algorithm for Shared Waypoints in Airport Group[J]. Journal of Transport Information and Safety, 2021, 39(5): 93-99,136. doi: 10.3963/j.jssn.1674-4861.2021.05.012
Citation: WANG Lili, LIN Yongya. Aircraft Sequencing Modeling and Algorithm for Shared Waypoints in Airport Group[J]. Journal of Transport Information and Safety, 2021, 39(5): 93-99,136. doi: 10.3963/j.jssn.1674-4861.2021.05.012

机场群共用航路点的航班排序模型及算法

doi: 10.3963/j.jssn.1674-4861.2021.05.012
基金项目: 

国家自然科学基金委员会与中国民用航空局联合资助项目 U1633124

详细信息
    通讯作者:

    王莉莉(1973—),博士,教授.研究方向:空中交通流量管理、空域规划. E-mail:llwang@cauc.edu.cn

  • 中图分类号: U8

Aircraft Sequencing Modeling and Algorithm for Shared Waypoints in Airport Group

  • 摘要:

    机场群上空空域资源共享、运行耦合复杂,拥堵往往发生在共用航路点。为缓解空域拥堵和航班延误问题,开展了机场群共用航路点的优化排序研究。针对共用航路点的运行特征,引入惩罚因子并以总延误时间成本最小为优化目标,建立了机场群共用航路点的航班优化排序模型,基于滑动时间窗算法和粒子群优化算法的原理提出了TW-PSO组合优化算法对模型进行求解。选取京津冀机场群过共用航路点的航班进行算例仿真,结果表明:TW-PSO组合优化算法与FCFS算法、滑动时间窗算法、粒子群优化算法相比在高峰时段的总延误时间成本分别减少了216,212,161 min;在算法性能方面,具有比经典算法迭代次数少、优化效果更佳的优点,能有效缓解航班延误问题,改善机场群的协同运行效率。

     

  • 图  1  延误时间成本累积折线图

    Figure  1.  Cumulative line chart of the delay time cost

    图  2  通行量统计图

    Figure  2.  Statistics of traffic volume

    表  1  变量定义

    Table  1.   Variable definitions

    变量 含义
    A 机场群系统中的机场集合
    a 机场群系统中的机场,aA
    n 从各机场起飞过共用航路点的航班总数
    T 航班过共用航路点的时间段
    t 航班过共用航路点的时刻
    FaT T时间段内从机场a起飞过共用航路点的航班集合,FaT = {fa1, fa2,…,fan}
    fai T时间段内从机场a起飞过共用航路点的第i个航班(i = 1, 2,…,n)
    ETfai 过共用航路点的计划时刻
    STfai 过共用航路点的实际时刻
    PTfai 最早过共用航路点的时刻
    DTfai 最晚过共用航路点的时刻
    Cp 时间段内共用航路点的最大容量
    Ca 时间段内共用航路点所在扇区的最大容量
    Si,i+1 前后2个航班在共用航路点的安全间隔
    xfai (t) = {0, 1}
    xfai (t) xfai (t) = 1,即t时刻航班fai过共用航路点
    xfai (t) = 0,即t时刻航班fai不过共用航路点
    下载: 导出CSV

    表  2  算法优化结果对比

    Table  2.   Comparison of the results of optimized algorithms

    航班号 起飞机场 计划过点时刻 FCFS算法优化结果 滑动时间窗算法优化结果 粒子群优化算法优化结果 TW-PSO组合优化算法优化结果
    实际过点时刻 延误时间成本/min 实际过点时刻 延误时间成本/min 排序结果 实际过点时刻 延误时间成本/min 排序结果 实际过点时刻 延误时间成本/min 排序结果
    F1 B 09:02 09:02 0 09:02 0 1 08:57 -10 1 08:57 -10 1
    F2 T 09:05 09:05 0 09:05 0 2 09:00 -5 2 09:00 -5 2
    F3 B 09:06 09:07 3 09:07 3 3 09:26 60 13 09:02 -8 3
    F4 B 09:07 09:09 6 09:17 30 8 09:02 -10 3 09:12 15 8
    F5 D 09:09 09:11 6 09:09 0 4 09:04 -10 4 09:04 -10 4
    F6 S 09:10 09:13 9 09:11 3 5 09:30 60 15 09:06 -8 5
    F7 T 09:12 09:15 6 09:15 6 7 09:07 -5 5 09:10 -2 7
    F8 D 09:13 09:17 12 09:13 0 6 09:33 60 16 09:08 -10 6
    F9 B 09:14 09:19 15 09:27 39 13 09:09 -10 6 09:22 24 13
    F10 B 09:15 09:21 18 09:29 42 14 09:23 24 12 09:24 27 14
    F11 T 09:17 09:23 12 09:31 28 15 09:12 -5 7 09:26 18 15
    F12 S 09:18 09:25 14 09:33 30 16 09:38 40 18 09:28 20 16
    F13 B 09:19 09:27 24 09:19 0 9 09:14 -10 8 09:14 -10 9
    F14 B 09:21 09:29 24 09:21 0 10 09:16 -10 9 09:16 -10 10
    F15 S 09:23 09:31 16 09:23 0 11 09:43 40 20 09:18 -5 11
    F16 B 09:24 09:33 27 09:25 3 12 09:19 -10 10 09:20 -8 12
    F17 D 09:26 09:35 27 09:37 33 18 09:21 -10 11 09:32 18 18
    F18 B 09:30 09:37 21 09:39 27 19 09:35 15 17 09:34 12 19
    F19 S 09:33 09:39 12 09:41 16 20 09:28 -5 14 09:36 6 20
    F20 T 09:34 09:41 14 09:35 2 17 09:40 12 19 09:30 -4 17
    总延误时间成本/min 266 262 211 50
    下载: 导出CSV
  • [1] FAYE A. Solving the aircraft landing problem with time dis-cretization approach[J]. European Journal of Operational Research, 2015, 242(3): 1028-1038. doi: 10.1016/j.ejor.2014.10.064
    [2] SALEHIPOUR A. An algorithm for single and multiple-runway aircraft landing problem[J]. Mathematics and Computers in Simulation(MATCOM), 2020(175): 179-191. http://www.sciencedirect.com/science/article/pii/S037847541930309X
    [3] 崔昳昕, 康道驰. 单跑道进离场航班强化学习排序模型研究[J]. 航空计算技术, 2019, 49(2): 50-53. doi: 10.3969/j.issn.1671-654X.2019.02.013

    CUI Yixin, KANG Daochi. Reinforcement learning model of aircraft sequencing problem on a single runway[J]. Aeronautical Computing Technique, 2019, 49(2): 50-53. (in Chinese) doi: 10.3969/j.issn.1671-654X.2019.02.013
    [4] 张兆宁, 刘珂璇. 基于跑道运行类别的航班优化排序方法[J]. 重庆交通大学学报(自然科学版), 2020, 39(5): 32-37. doi: 10.3969/j.issn.1674-0696.2020.05.06

    ZHANG Zhaoning, LIU Kexuan. Aircraft sequencing optimization method based on runway operation category[J]. Journal of Chongqing Jiaotong University(Natural Science), 2020, 39(5): 32-37. (in Chinese) doi: 10.3969/j.issn.1674-0696.2020.05.06
    [5] 刘继新, 江灏, 董欣放, 等. 基于空中交通密度的进场航班动态协同排序方法[J]. 航空学报, 2020, 41(7): 285-300. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202007025.htm

    LIU Jixin, JIANG Hao, DONG Xinfang, et al. Dynamic collaborative sequencing method for arrival flights based on air traffic density[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 285-300. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202007025.htm
    [6] 邱梦雅, 乐美龙, 胡钰明. 机场终端区进场航班优化排序研究[J]. 航空计算技术, 2021, 51(3): 45-49. doi: 10.3969/j.issn.1671-654X.2021.03.011

    QIU Mengya, LE Meilong, HU Yuming. Research on optimal sequencing of incoming flights in airport terminal area[J]. Aeronautical Computing Technique, 2021, 51(3): 45-49(in Chinese) doi: 10.3969/j.issn.1671-654X.2021.03.011
    [7] SARAF A, CLARKE J P, MCLAIN E. Discussion and comparison of metroplex-wide arrival scheduling algorithms[C]. 10th AIAA Aviation Technology, Integration and Operations (ATIO)Conference, Fort Worth, Texas: AIAA, 2010.
    [8] WIELAND F, TYAGI A, KUMAR V. Metrosim: A metroplex-wide route planning and airport scheduling tool[C]. 14th AIAA Aviation Technology, Integration and Operations (ATIO)Conference, Atlanta: AIAA, 2014.
    [9] CAPPS A, KISTLER M, ENGELLAND S. Design characteristics of a terminal departure scheduler[C]. 14th AIAA Aviation Technology, Integration and Operations (ATIO)Conference, Atlanta: AIAA, 2014.
    [10] 黄吉波. 珠三角终端区进离场航班协同排序方法研究[D]. 南京: 南京航空航天大学, 2015.

    HUANG Jibo. Research on coordinated sequencing for arrival and departure in the Pearl River Delta metropolitan areas[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015. (in Chinese)
    [11] 王莉莉, 张潇潇. 多机场协同决策进离场航班排序模型及算法研究[J]. 飞行力学, 2016, 34(1): 90-94. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201601021.htm

    WANG Lili, ZHANG Xiaoxiao. Modeling and algorithm of arrival and departing aircraft sequencing in multi-airport terminal area collaborative decision[J]. Flight Dynamics, 2016, 34(1): 90-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201601021.htm
    [12] 陆嘉旻. 多机场终端区进场航班排序方法研究[J]. 科技创新导报, 2016, 13(9): 21-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXDB201609013.htm

    LU Jiamin. Research on arrival aircraft sequencing method in multi-airport terminal area[J]. Science and Technology Innovation Herald, 2016, 13(9): 21-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZXDB201609013.htm
    [13] 张军峰, 葛腾腾, 郑志祥. 多机场终端区进离场航班协同排序研究[J]. 交通运输系统工程与信息, 2017, 17(2): 197-204. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201702029.htm

    ZHANG Junfeng, GE Tengteng, ZHENG Zhixiang. Collaborative arrival and departure sequencing for multi-airport terminal area[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(2): 197-204. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201702029.htm
    [14] 王湛, 吴艺. 基于FS-MOPSO的多机场终端区协同航班调度策略[J]. 西南交通大学学报, 2017, 52(1): 179-185. doi: 10.3969/j.issn.0258-2724.2017.01.025

    WANG Zhan, WU Yi. Collaborative aircrafts scheduling strategy in metroplex terminal area based on FS-MOPSO[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 179-185. (in Chinese) doi: 10.3969/j.issn.0258-2724.2017.01.025
    [15] 胡京. 多机场动态地面等待策略的研究[D]. 南京: 南京航空航天大学, 2018.

    HU Jing. The research on dynamic multi-airport ground holding policies[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese)
    [16] 黄吉波. 基于延误分配的多机场终端区航班排序模型[J]. 指挥信息系统与技术, 2019, 10(1): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXT201901007.htm

    HUANG Jibo. Flight sequencing model for multi-airport terminal area based on delay allocation[J]. Command Information System and Technology, 2019, 10 (1): 37-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXT201901007.htm
    [17] 张建学. 基于多机场终端区进场航班排序研究[J]. 电子测试, 2019, (14) : 124-125+94. doi: 10.3969/j.issn.1000-8519.2019.14.049

    ZHANG Jianxue. Research on the arrival flight sorting based on multi-airport terminal area[J]. Electronic Test, 2019, (14): 124-125+94. (in Chinese) doi: 10.3969/j.issn.1000-8519.2019.14.049
    [18] 张颖, 胡明华, 谢华. 航路流量间隔限制及排序策略一体化决策模型及算法[J]. 系统工程理论与实践, 2013, 33(9): 2430-2436. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201309030.htm

    ZHANG Ying, HU Minghua, XIE Hua. Integrative decision making model and solution algorithm for enroute flow spacing restriction and sequencing strategy[J]. Systems Engineering Theory & Practice, 2013, 33 (9): 2430-2436. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201309030.htm
    [19] 赵嶷飞, 王惠斌. 汇聚航路航班排序的遗传算法研究[J]. 中国科技纵横, 2015, (8): 42-43+45. doi: 10.3969/j.issn.1671-2064.2015.08.032

    ZHAO Yifei, WANG Huibin. Study on genetic algorithm of convergent route flight sequencing[J]. China Science & Technology Overview, 2015, (8): 42-43+45. (in Chinese) doi: 10.3969/j.issn.1671-2064.2015.08.032
    [20] 杜实, 李希璐. 基于交通波模型的交叉点航班排序研究[J]. 航空计算术, 2017, 47 (3): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ201703016.htm

    DU Shi, LI Xilu. Research on air traffic sequence of intersection flight based on traffic wave model[J]. Aeronautical Computing Technique, 2017, 47 (3): 66-69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ201703016.htm
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  421
  • HTML全文浏览量:  266
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-14

目录

    /

    返回文章
    返回