留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进YOLOv5的雾霾环境下船舶红外图像检测算法

马浩为 张笛 李玉立 范亮

马浩为, 张笛, 李玉立, 范亮. 基于改进YOLOv5的雾霾环境下船舶红外图像检测算法[J]. 交通信息与安全, 2023, 41(1): 95-104. doi: 10.3963/j.jssn.1674-4861.2023.01.010
引用本文: 马浩为, 张笛, 李玉立, 范亮. 基于改进YOLOv5的雾霾环境下船舶红外图像检测算法[J]. 交通信息与安全, 2023, 41(1): 95-104. doi: 10.3963/j.jssn.1674-4861.2023.01.010
MA Haowei, ZHANG Di, LI Yuli, FAN Liang. A Ship Detection Algorithm for Infrared Images under Hazy Environment based on an Improved YOLOv5 Algorithm[J]. Journal of Transport Information and Safety, 2023, 41(1): 95-104. doi: 10.3963/j.jssn.1674-4861.2023.01.010
Citation: MA Haowei, ZHANG Di, LI Yuli, FAN Liang. A Ship Detection Algorithm for Infrared Images under Hazy Environment based on an Improved YOLOv5 Algorithm[J]. Journal of Transport Information and Safety, 2023, 41(1): 95-104. doi: 10.3963/j.jssn.1674-4861.2023.01.010

基于改进YOLOv5的雾霾环境下船舶红外图像检测算法

doi: 10.3963/j.jssn.1674-4861.2023.01.010
基金项目: 

国家重点研发计划项目 2017YFC0804904

湖北省科技创新人才及服务专项国际科技合作项目 2021EHB007

韶关市创新创业团队引进项目 201212176230928

详细信息
    作者简介:

    马浩为(1996—),硕士研究生. 研究方向:船舶行为识别. E-mail: hwma@whut.edu.cn

    通讯作者:

    范亮(1990—),博士. 研究方向:水上交通态势感知等. E-mail: fanliang@whut.edu.cn

  • 中图分类号: U676.1

A Ship Detection Algorithm for Infrared Images under Hazy Environment based on an Improved YOLOv5 Algorithm

  • 摘要: 从监控图像中准确检测船舶对于港区水域船舶交通智能监管具有重要意义。为解决雾霾条件下传统YOLOv5目标检测算法对船舶红外图像检测准确率低、小目标特征提取能力弱等问题,提出了基于Swin Transformer的改进YOLOv5船舶红外图像检测算法。为扩大原始数据集的多样性,综合考虑船舶红外图像轮廓特征模糊、对比度低、抗云雾干扰能力强等特点,改进算法提出基于大气散射模型的数据集增强方法;为增强特征提取过程中全局特征的关注能力,改进算法的主干网络采用Swin Transformer提取船舶红外图像特征,并通过滑动窗口多头自注意力机制扩大窗口视野范围;为增强网络对密集小目标空间特征提取能力,通过改进多尺度特征融合网络(PANet),引入底层特征采样模块和坐标注意力机制(CA),在注意力中捕捉小目标船舶的位置、方向和跨通道信息,实现小目标的精确定位;为降低漏检率和误检率,采用完全交并比损失函数(CIoU)计算原始边界框的坐标预测损失,结合非极大抑制算法(NMS)判断并筛选候选框多次循环结构,提高目标检测结果的可靠性。实验结果表明:在一定浓度的雾霾环境下,改进算法的平均识别精度为93.73%,平均召回率为98.10%,平均检测速率为每秒38.6帧;与RetinaNet、Faster R-CNN、YOLOv3 SPP、YOLOv4、YOLOv5和YOLOv6-N算法相比,其平均识别精度分别提升了13.90%、11.53%、8.41%、7.21%、6.20%和3.44%,平均召回率分别提升了11.81%、9.67%、6.29%、5.53%、4.87%和2.39%。综上,所提的Swin-YOLOv5s改进算法对不同大小的船舶目标识别均具备较强的泛化能力,并具有较高的检测精度,有助于提升港区水域船舶的监管能力。

     

  • 图  1  Swin-YOLOv5s架构

    Figure  1.  Swin-YOLOv5s framework

    图  2  合成雾霾图像(i为雾霾浓度系数)

    Figure  2.  Synthetic haze image(i is the haze concentration factor)

    图  3  Swin-YOLOv5s主干网络

    Figure  3.  Swin-YOLOv5s backbone

    图  4  多尺度特征融合网络

    Figure  4.  Path aggregation network

    图  5  CA注意力模块

    Figure  5.  Coordinate attention modules

    图  6  数据集分布特点

    Figure  6.  Dataset distribution characteristics

    图  7  Loss-Epoch变化曲线图

    Figure  7.  Loss-Epoch variation graphs

    图  8  YOLOv5s与Swin-YOLOv5s检测对比

    Figure  8.  Comparison of yolov5s and swin-yolov5s detection

    图  9  不同雾霾浓度下YOLOv5s与Swin-YOLOv5s的红外船舶图像检测结果对比

    Figure  9.  Comparison of infrared ship image detection results between YOLOv5s and Swin-YOLOv5s at different haze concentrations

    表  1  实验训练参数

    Table  1.   Experimental training parameters

    参数 取值
    Learning rate(学习率) 0.01
    Optimizer(优化器) Adam
    Batch size(每批数据量大小) 8
    Epoch(训练次数) 300
    下载: 导出CSV

    表  2  消融实验结果

    Table  2.   Ablation experiment results

    实验序号 ST CA CIoU 参数量/× 106 mAP/% FPS/(帧/s)
    1 5.7 87.53 42.1
    2 6.2 90.34 38.9
    3 6.0 89.27 41.9
    4 5.7 88.38 42.0
    5 6.6 92.89 38.8
    6 6.2 91.16 38.7
    7 6.0 90.12 41.8
    8 6.6 93.73 38.6
    下载: 导出CSV

    表  3  主流算法mAP对比结果

    Table  3.   Mainstream algorithm map comparison results

    主流检测算法 平均精度(AP)/% mAP/% 召回率/% FPS/(帧/s)
    帆船 艇型船 邮轮 军舰 散货船 集装箱船 渔船
    RetinaNet 76.21 66.45 76.73 86.87 87.68 89.21 75.69 79.83 86.29 18.4
    Faster R-CNN 78.95 68.86 78.68 89.77 88.86 90.32 79.94 82.20 88.43 11.3
    YOLOv3 SPP 85.44 73.72 82.86 90.77 91.73 92.52 80.21 85.32 91.81 22.7
    YOLOv4 86.12 78.21 83.28 92.34 91.41 92.86 81.39 86.52 92.57 21.6
    YOLOv5s 87.07 79.32 83.84 93.57 92.42 93.09 83.42 87.53 93.23 42.1
    YOLOv6-N 89.24 81.33 89.44 96.28 94.14 96.94 84.69 90.39 95.71 49.2
    Swin-YOLOv5s 91.53 89.81 90.38 98.83 97.37 98.39 89.83 93.73 98.10 38.6
    下载: 导出CSV
  • [1] 王岩, 孙寿保, 徐峰, 等. 提升尹公洲段航道通过能力的探讨[J]. 水运工程, 2020(12): 161-165, 190.

    WANG Y, SUN S B, XU F, et al. Discussion on improving passage capacity of Yingongzhou channel[J]. Port & Waterway Engineering, 2020(12): 161-165, 190. (in Chinese)
    [2] 郝姝馨, 郝增周, 黄海清, 等. 基于Himawari-8数据的夜间海雾识别[J]. 海洋学报, 2021, 43(11): 166-180.

    HAO S X, HAO Z Z, HUANG H Q, et al. Nighttime sea fog recognition based on Himawari-8 data[J]. Acta OceanologicaSinca, 2021, 43(11): 166-180. (in Chinese)
    [3] 李云红, 刘宇栋, 苏雪平, 等. 红外与可见光图像配准技术研究综述[J]. 红外技术, 2022, 44(7): 641-651. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202207001.htm

    LI Y H, LIU Y D, SU X P, et al. Review of infrared and visible image registration[J]. Infrared Technology, 2022, 44(7): 641-651. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202207001.htm
    [4] SHU Q, WU C, ZHONG Q, et al. Alternating minimization algorithm for hybrid regularized variational image dehazing[J]. Optik, 2019(185): 943-956.
    [5] ZHANG J, FENG F, SONG W. A compensation textures dehazing method for water alike area[J]. The Journal of Supercomputing, 2021, 77(4): 3555-3570. doi: 10.1007/s11227-020-03406-8
    [6] MA Z, WEN J, ZHANG C, et al. An effective fusion defogging approach for single sea fog image[J]. Neurocomputing, 2016(173): 1257-1267.
    [7] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbia, USA: IEEE, 2014.
    [8] 车凯, 向郑涛, 陈宇峰, 等. 基于改进Fast R-CNN的红外图像行人检测研究[J]. 红外技术, 2018, 40(6): 578-584. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201806010.htm

    CHE K, XIANG Z T, CHEN Y F, et al. Research on infrared image pedestrian detection based on improved Fast R-CNN[J]. Infrared Technology, 2018, 40(6): 578-584. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201806010.htm
    [9] 顾燕, 李臻, 杨锋, 等. 基于改进Faster R-CNN的复杂背景红外车辆检测算法[J]. 激光与红外, 2022, 52(4): 614-619. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202204022.htm

    GU Y, LI Z, YANG F, et al. Infrared vehicle detection algorithm with complex background based on improved Fast R-CNN[J]. Laser & Infrared, 2022, 52(4): 614-619. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202204022.htm
    [10] CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]. 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA: IEEE, 2018.
    [11] ZHANG C, XIONG B, KUANG G. Ship detection and recognition in optical remote sensing images based on scale enhancement rotating Cascade R-CNN networks[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium: IEEE, 2021.
    [12] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]. 2016 IEEE European Conference on Computer Vision, Amsterdam: IEEE, 2016.
    [13] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA: IEEE, 2016.
    [14] ZOU Y, ZHAO L, QIN S, et al. Ship target detection and identification based on SSD_MobilenetV2[C]. 2020 IEEE Information Technology and Mechatronics Engineering Conference, Changsha, China: IEEE, 2020.
    [15] CHANG Y L, ANAGAW A, CHANG L, et al. Ship detection based on YOLOv2 for SAR imagery[J]. Remote Sensing, 2019, 11(7): 786-800.
    [16] 陈信强, 郑金彪, 凌峻, 等. 基于异步交互聚合网络的港船作业区域人员异常行为识别[J]. 交通信息与安全, 2022, 40 (2): 22-29. doi: 10.3963/j.jssn.1674-4861.2022.02.003

    CHEN X Q, ZHENG J B, LING J, et al. Detecting abnormal behaviors of workers at ship working fields via asynchronous interaction aggregation network[J]. Journal of Transport Information and Safety, 2022, 40(2): 22-29. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.02.003
    [17] LIU R W, YUAN W, CHEN X, et al. An enhanced CNN-enabled learning method for promoting ship detection in maritime surveillance system[J]. Ocean Engineering, 2021, (235): 109435.
    [18] LIU W, REN G, YU R, et al. Image-adaptive YOLO for object detection in adverse weather conditions[C]. The AAAI Conference onArtificial Intelligence, Beijing, China: AAAI, 2022.
    [19] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]. 2021 IEEE International Conference on Computer Vision, Montreal, Canada: IEEE, 2021.
    [20] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]. 2021 IEEE Conference on Computer Vision and Pattern Recognition, Nashville, USA: IEEE, 2021.
    [21] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]. 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA: IEEE, 2018.
    [22] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]. 2018 IEEE European Conference on Computer Vision, Munich, Germany: IEEE, 2018.
    [23] PARK J, WOO S, LEE J Y, et al. BAM: bottleneck attention module[C]. 2018 British Machine Vision Conference, Newcastle, UK: IAPR, 2018.
    [24] Infiray. Infiray infrared open source offshore vessel dataset[R/OL]. (2021-12)[2022-10-30]. http://iray.iraytek.com:7813/apply/E_Sea_shipping.html/
    [25] CHEN X, LING J, WANG S, et al. Ship detection from coastal surveillance videos via an ensemble Canny-Gaussian-morphology framework[J]. The Journal of Navigation, 2021, 74 (6): 1252-1266.
    [26] CHEN Z, CHEN D, ZHANG Y, et al. Deep learning for autonomous ship-oriented small ship detection[J]. Safety Science, 2020, (130): 104812.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  988
  • HTML全文浏览量:  414
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-26
  • 网络出版日期:  2023-05-13

目录

    /

    返回文章
    返回