留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于递归框架的高速公路交通流量实时预测方法

陈宇 王炜 华雪东 赵德

陈宇, 王炜, 华雪东, 赵德. 基于递归框架的高速公路交通流量实时预测方法[J]. 交通信息与安全, 2023, 41(1): 124-131. doi: 10.3963/j.jssn.1674-4861.2023.01.013
引用本文: 陈宇, 王炜, 华雪东, 赵德. 基于递归框架的高速公路交通流量实时预测方法[J]. 交通信息与安全, 2023, 41(1): 124-131. doi: 10.3963/j.jssn.1674-4861.2023.01.013
CHEN Yu, WANG Wei, HUA Xuedong, ZHAO De. A Recursive Framework-based Approach for Real-time Traffic Flow Forecasting for Highways[J]. Journal of Transport Information and Safety, 2023, 41(1): 124-131. doi: 10.3963/j.jssn.1674-4861.2023.01.013
Citation: CHEN Yu, WANG Wei, HUA Xuedong, ZHAO De. A Recursive Framework-based Approach for Real-time Traffic Flow Forecasting for Highways[J]. Journal of Transport Information and Safety, 2023, 41(1): 124-131. doi: 10.3963/j.jssn.1674-4861.2023.01.013

基于递归框架的高速公路交通流量实时预测方法

doi: 10.3963/j.jssn.1674-4861.2023.01.013
基金项目: 

国家自然科学基金项目 51878166

科技部雄安新区科技创新专项 2022XAGG0126

详细信息
    作者简介:

    陈宇(1998—),博士研究生. 研究方向:交通运输系统优化. E-mail:230228902@seu.edu.cn

    通讯作者:

    王炜(1959—),博士,教授. 研究方向:城市虚拟交通系统仿真技术等. E-mail:wangwei_transtar@163.com

  • 中图分类号: U491.1+4

A Recursive Framework-based Approach for Real-time Traffic Flow Forecasting for Highways

  • 摘要: 实时与准确的断面交通流量预测是实现高速公路智能化管理与控制的基础。高速公路交通流量预测要求对数据噪声进行有效处理,且需要满足实时性需求。然而,少有研究从实时性的角度对高速公路交通流量预测的准确性进行改善。研究了结合自适应卡尔曼滤波与长短时记忆神经网络(long short-term memory,LSTM)自编码器的高速公路交通流量递归预测框架,可以满足智能交通系统的实时性与准确性需求。收集高速公路的交通流量和速度等历史数据,应用卡尔曼滤波方法进行数据平滑,以提高原始数据的可预测性能;引入无监督机器学习算法LSTM自编码器对交通流量的时变特征进行建模,以提高模型的运算效率;考虑到高速公路交通流量预测的实时性需要,进一步提出递归预测框架,用LSTM自编码器的预测值代替卡尔曼滤波值;根据获取的实时数据,执行自适应卡尔曼滤波算法以修正当前的最佳状态值,并将该修正值输入LSTM自编码器进行迭代预测。选取美国明苏尼达双子城高速公路的实测交通数据进行案例分析,结果表明:所提出的高速公路实时交通流量递归预测框架在计算成本与预测精度2个方面具有相对竞争优势,模型预测的平均绝对百分比误差为5.0%,优于卡尔曼滤波和LSTM自编码器组合模型的7.4%;模型训练时间为85 s,低于标准LSTM模型的101 s。

     

  • 图  1  高速公路路段示意图

    Figure  1.  Schematic of highway sections

    图  2  编码器框架示意图

    Figure  2.  General Architecture of Encoder-Decoder

    图  3  递归预测框架

    Figure  3.  Recursive prediction framework

    图  4  卡尔曼滤波对交通流量和速度的平滑效果图

    Figure  4.  Smoothing effect on traffic flow and speed

    图  5  各实验方案在测试集上的预测效果

    Figure  5.  Performance of the four experimental schemes

    表  1  各实验方案在测试集上的评价结果

    Table  1.   Evaluation results of the four experimental schemes

    实验方案 预测步长 PMSE PMAPE/% R2
    F1 一步预测 654 9.7 0.96
    二步预测 901 11.3 0.94
    三步预测 1 147 11.9 0.93
    四步预测 1 508 13.0 0.90
    五步预测 1 983 15.2 0.85
    F2 一步预测 641 9.5 0.96
    二步预测 909 11.2 0.95
    三步预测 1 087 11.7 0.93
    四步预测 1 410 11.8 0.92
    五步预测 1 998 13.4 0.89
    F3 一步预测 544 7.4 0.98
    二步预测 763 9.2 0.97
    三步预测 1 081 9.9 0.96
    四步预测 1 472 10.5 0.94
    五步预测 1 809 11.6 0.91
    F4 一步预测 452 5.0 0.99
    二步预测 697 6.9 0.98
    三步预测 912 8.1 0.97
    四步预测 1 290 9.6 0.95
    五步预测 1 564 10.2 0.93
    下载: 导出CSV

    表  2  标准LSTM与LSTMAE的对比

    Table  2.   Comparison of LSTM and LSTMAE on F4

    实验方案 预测步长 PMSE/% R2 训练时间/s*
    F4-LSTM AE 一步预测 5.0 0.99 85
    二步预测 6.9 0.98
    三步预测 8.1 0.97
    四步预测 9.6 0.95
    五步预测 10.2 0.93
    F4-LSTM 一步预测 6.1 0.97 101
    二步预测 7.2 0.95
    三步预测 9.0 0.95
    四步预测 10.8 0.92
    五步预测 13.5 0.91
    F4-SVR 一步预测 8.8 0.95 66
    二步预测 10.3 0.93
    三步预测 11.5 0.92
    四步预测 13.2 0.90
    五步预测 16.7 0.84
    F4-ARIMA 一步预测 13.7 0.89 42
    二步预测 15.2 0.85
    三步预测 16.9 0.83
    四步预测 18.0 0.80
    五步预测 20.1 0.75
    *注:实验基于GPU(NVIDA GeForce 940MX)与TensorFlow V2.6实现,训练时间包括超参数优化时间。
    下载: 导出CSV
  • [1] VLAHOGIANNI E I, KARLAFTIS M G, GOLIAS J C. Short-term traffic forecasting: where we are and where we're going[J]. Transportation Research Part C: Emerging Technologies, 2014, 43: 3-19. doi: 10.1016/j.trc.2014.01.005
    [2] OH S, BYON Y J, JANG K, et al. Short-term travel-time prediction on highway: a review on model-based approach[J]. KSCE Journal of Civil Engineering, 2018, 22(1): 298-310. doi: 10.1007/s12205-017-0535-8
    [3] DO L N N, TAHERIFAR N, VU H L. Survey of neural network-based models for short-term traffic state prediction[J]. Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery, 2019, 9(1): e1285.
    [4] KASHYAP A A, RAVIRAJ S, DEVARAKONDA A, et al. Traffic flow prediction models: a review of deep learning techniques[J]. Cogent Engineering, 2022, 9(1): 2010510. doi: 10.1080/23311916.2021.2010510
    [5] CHAN K Y, DILLON T S, SINGH J, et al. Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg-Marquardt algorithm[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(2): 644-654. doi: 10.1109/TITS.2011.2174051
    [6] ZHAO L N, WEN X Y, WANG Y P, et al. A novel hybrid model of ARIMA-MCC and CKDE-GARCH for urban short-term traffic flow prediction[J]. IET Intelligent Transport Systems, 2022, 16(2): 206-217. doi: 10.1049/itr2.12138
    [7] GIRAKA O, SELVARAJ V K. Short-term prediction of intersection turning volume using seasonal ARIMA model[J]. Transportation Letters-The International Journal of Transportation Research, 2020, 12(7): 483-490.
    [8] KUMAR B P, HARIHARAN K. Time series traffic flow prediction with hyper-parameter optimized ARIMA models for intelligent transportation system[J]. Journal of Scientific & Industrial Research, 2022, 81(4): 408-15.
    [9] EMAMI A, SARVI M, BAGLOEE S A. Using Kalman filter algorithm for short-term traffic flow prediction in a connected vehicle environment[J]. Journal of Modern Transportation, 2019, 27(3): 222-232. doi: 10.1007/s40534-019-0193-2
    [10] CAI L R, ZHANG Z C, YANG J J, et al. A noise-immune Kalman filter for short-term traffic flow forecasting[J]. Physica A-Statistical Mechanics and its Applications, 2019, 536(C): 122601.
    [11] 王科伟, 徐志红. 基于混沌时间序列的道路断面短时交通流预测模型[J]. 交通运输工程与信息学报, 2010, 8(1): 70-74. doi: 10.3969/j.issn.1672-4747.2010.01.014

    WANG K W, XU Z H. Chaotic-time-series-based short-term traffic flow forecast model of road cross-section[J]. Journal of Transportation Engineering and Information, 2010, 8(1): 70-74. (in Chinese) doi: 10.3969/j.issn.1672-4747.2010.01.014
    [12] 周晓, 唐宇舟, 刘强. 基于卡尔曼滤波的道路平均速度预测模型研究[J]. 浙江工业大学学报, 2020, 48(4): 392-396, 404. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJGD202004006.htm

    ZHOU X, TAND Y Z, LIU Q. Research on road average speed prediction model based on Kalman filter[J]. Journal of Zhejiang University of Technology, 2020, 48(4): 392-396, 404. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZJGD202004006.htm
    [13] 申雷霄, 陆宇航, 郭建华. 卡尔曼滤波短时交通流预测普通国省道适应性研究[J]. 交通信息与安全, 2021, 39(5): 117-127. doi: 10.3963/j.jssn.1674-4861.2021.05.015

    SHEN X X, LU Y H, GUO J H. Adaptability of Kalman filter for short-time traffic flow forecasting on national and provincial highways[J]. Journal of Transport Information and Safety, 2021, 39(5): 117-127. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.05.015
    [14] KUMAR K, PARIDA M, KATIYAR V K. Short term traffic flow prediction for a non urban highway using artificial neural network[J]. Procedia Social and Behavioral Sciences, 2013, 104: 755-764. doi: 10.1016/j.sbspro.2013.11.170
    [15] CHEN Y Y, CHEN H Y, YE P J, et al. Acting as a decision maker: Traffic-condition-aware ensemble learning for traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(4): 3190-3200. doi: 10.1109/TITS.2020.3032758
    [16] 许岩岩, 翟希, 孔庆杰, 等. 高速路交通流短时预测方法[J]. 交通运输工程学报, 2013, 13(2): 114-119.

    XU Y Y, ZHAI X, KONG Q J, et al. Short-term prediction method of freeway traffic flow[J]. Journal of Traffic and Transportation Engineering, 2013, 13(2): 114-119. (in Chinese)
    [17] 李巧茹, 赵蓉, 陈亮. 基于SVM与自适应时空数据融合的短时交通流量预测模型[J]. 北京工业大学学报, 2015, 41 (4): 597-602.

    LI Q R, ZHAO R, CHEN L. Short-term traffic flow forecasting model based on SVM and adaptive spatio-temporal data fusion[J]. Journal of Beijing University of Technology, 2015, 41(4): 597-602. (in Chinese)
    [18] CHEN Y, WANG W, HUA X D, et al. Survey of decomposition-reconstruction-based hybrid approaches for short-term traffic state forecasting[J]. Sensors, 2022, 22(14): 5263.
    [19] LYU Y S, DUAN Y J, KANG W W, et al. Traffic flow prediction with big data: A deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 865-873.
    [20] ZHANG Y N, ZHOU Y H, LU H P, et al. Traffic network flow prediction using parallel training for deep convolutional neural networks on spark cloud[J]. IEEE Transactions on Industrial Informatics, 2020, 16(12): 7369-7380.
    [21] WEI W Y, WU H H, MA H. An AutoEncoder and LSTM-based traffic flow prediction method[J]. Sensors, 2019, 19(13): 2946.
    [22] CHEN Z F, XU J M, LIN Y J, et al. A traffic flow forecasting method regarding traffic network as an digraph[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2021, 35(15): 2159043.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  711
  • HTML全文浏览量:  250
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-22
  • 网络出版日期:  2023-05-13

目录

    /

    返回文章
    返回