留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

绿色航运能源技术现状及发展趋势分析

陈弓 朱宇 韩冰

陈弓, 朱宇, 韩冰. 绿色航运能源技术现状及发展趋势分析[J]. 交通信息与安全, 2023, 41(2): 168-178. doi: 10.3963/j.jssn.1674-4861.2023.02.018
引用本文: 陈弓, 朱宇, 韩冰. 绿色航运能源技术现状及发展趋势分析[J]. 交通信息与安全, 2023, 41(2): 168-178. doi: 10.3963/j.jssn.1674-4861.2023.02.018
CHEN Gong, ZHU Yu, HAN Bing. A Study on the Status Quo and Trend of Green Energy Technology for Shipping Industry[J]. Journal of Transport Information and Safety, 2023, 41(2): 168-178. doi: 10.3963/j.jssn.1674-4861.2023.02.018
Citation: CHEN Gong, ZHU Yu, HAN Bing. A Study on the Status Quo and Trend of Green Energy Technology for Shipping Industry[J]. Journal of Transport Information and Safety, 2023, 41(2): 168-178. doi: 10.3963/j.jssn.1674-4861.2023.02.018

绿色航运能源技术现状及发展趋势分析

doi: 10.3963/j.jssn.1674-4861.2023.02.018
基金项目: 

国家重点研发计划项目 2021YFC2801000

福建省自然科学基金项目 2022J011128

详细信息
    作者简介:

    陈弓(1968—),本科,高级工程师. 研究方向:绿色航运、智能船舶. E-mail: chen.gong@coscoshipping.com

    通讯作者:

    韩冰(1981—),博士,研究员. 研究方向:绿色航运、智能船舶. E-mail: han.bing@coscoshipping.com

  • 中图分类号: U677

A Study on the Status Quo and Trend of Green Energy Technology for Shipping Industry

  • 摘要: 航运可持续发展背景下,针对国内外碳排放发展战略及北极航道商业化航行的排放要求,研究绿色能源技术,实现航运业低碳化和清洁化已成为航运科研的重大任务。为明晰绿色燃料对实现航运碳中和的应用潜力,围绕能源技术的研究前沿,针对氢、氨和绿色甲醇3类绿色能源在国内外航运船舶中的技术应用和技术研究现状进行综述和评论,并从技术成熟度和商业成熟度2个角度对航运绿色能源开展初步技术评估,进而从燃料生产、运输储存加注、动力系统、船舶设计改造和航行运营5个方面分析讨论了航运绿色能源技术目前所存在的主要问题。分析结果表明:相较于传统重质柴油和LNG燃料技术,当前绿色能源技术的应用主要受制于燃料成本高昂且未实现规模化供给、基础配套设施缺乏、关键设备的研发及改造技术不成熟,并且尚未有1种燃料具有全方面、压倒性的技术优势从而能够完全替代现有传统燃料,但基于现有的技术路线和研究趋势,可预见甲醇将成为实现阶段性碳减排目标的主要能源。而实现碳中和目标,氢和氨则更具优势。氢和氨分别更适用于实现内河和海运船舶的碳中和目标。此外综合绿色航运能源的技术现状、主要问题和发展趋势,从燃料供应链建设、船舶技术研发、标准及政策法规3个方面提出发展建议。

     

  • 图  1  每1 t燃料的碳排放量

    Figure  1.  Carbon emissions per 1 of fuel

    表  1  主流绿色能源理化性质

    Table  1.   Physical and chemical properties of main green energy

    燃料类型 化学式/主要成分 物理状态 热值/(MJ/kg) 沸点/ ℃ 闪点/ ℃ 密度/(kg/m3) 液态能量密度(/ MJ/L) 自燃点/ ℃ 可燃极限/%
    LNG CH4 液态 50 -162 -175 450(-162 ℃) 22.5 650 5~15
    甲醇 CH3OH 液态 19.9 65 11 791(25 ℃) 15.7 464 6~36
    H2 气态 120 253 70.8(-253 ℃) 8.5 585 4~75
    NH3 气态 18.6 -33 682(-33 ℃) 12.7 630 15~28
    下载: 导出CSV

    表  2  船用动力比较

    Table  2.   Marine power comparison

    动力燃料类型 减排效果/% 环境风险 技术成熟度(0~9) 商业成熟度(0~9)
    LNG 10~30 甲烷泄露 9 7
    绿色甲醇 10~90 仍会产生二氧化碳排放 7.6 3.2
    液氢 100 6.8 2.4
    50~80 氨有毒性;有氮氧化物排放 7.0 2.9
    下载: 导出CSV

    表  3  氢燃料主要技术构成情况

    Table  3.   Main technical composition of hydrogen fuel

    技术构成 技术成熟度(0~9) 商业成熟度(0~9)
    燃料生产 9 3
      运输、储存与加注 储存 7 3
    加注 5 1.5
    驳运 7 3
    动力系统 氢发动机 7 1.5
    氢燃料电池 7 3
    船舶设计改造 7 3
    航行运营 不适用 1.5
    下载: 导出CSV

    表  4  氨燃料主要技术构成情况

    Table  4.   Main technical composition of ammonia fuel

    技术构成 技术成熟度(0~9) 商业成熟度(0~9)
    燃料生产 9 4.2
      运输、储存与加注 储存 9 4.5
    加注 7 1.5
    驳运 9 4.5
    动力系统 氨发动机 5 1.5
    氨燃料电池 5 1.5
    船舶设计改造 8 3
    航行运营 不适用 4.5
    排放 氮氧化物 9 3
    N2O 5 不适用
    下载: 导出CSV

    表  5  绿色甲醇燃料主要技术构成情况

    Table  5.   Main technical composition of green methanol fuel

    技术构成 技术成熟度(0~9) 商业成熟度(0~9)
    燃料生产 9 3
      运输、储存与加注 储存 9 4.5
    加注 9 3
    驳运 9 4.5
    动力系统 发动机 9 3
    燃料电池 5 2
    船舶设计改造 7.8 5
    航行运营 不适用 4.5
    排放 9 3
    下载: 导出CSV

    表  6  各能源生产成本情况

    Table  6.   Energy production costs

    燃料类型 成本(/ 元/t) 热值成本元/MJ
    低硫柴油 4 851 0.106 6
    LNG 7 434 0.148 6
    灰氢 16 860 0.140 5
    蓝氢 28 100 0.297 5
    绿氢 44 960 0.374 6
    灰氨 2 680 0.144 1
    蓝氨 3 705 0.199 1
    绿氨 4 521 0.243 1
    生物甲醇 2 789 0.140 2
    电制甲醇 3 675 0.184 7
    注:“灰”“蓝”“绿”分别表示“基于化石燃料采用化工技术制备”“基于化石燃料采用环保技术制备”和“基于可再生能源采用 环保技术制备”。
    下载: 导出CSV

    表  7  氢、氨、甲醇2021年产能

    Table  7.   Capacity of hydrogen, ammonia and methanol in 2021

    燃料类型 全球产量/百万t 中国产量/百万t
    70 33
    230 71
    甲醇 170 97.38
    下载: 导出CSV

    表  8  不同存储技术对比

    Table  8.   Comparison of different storage technologies

    储氢技术类型 存储条件 能量密度(/ MJ/m3
    柴油 常温常压 39.6
    LNG -163 ℃ 22.5
    高压气态储氢 300 bar 2.48
    700 bar 4.73
    液态储氢 -253 ℃ 8.5
    -33 ℃ 12.7
    甲醇 常温常压 15.7
    下载: 导出CSV

    表  9  各类动力应用研究情况

    Table  9.   Research on various power applications

    燃料类型 动力类型 预计上船应用年份
    四冲程内燃机 2030
    燃料电池 2026
    二冲程内燃机 2026
    四冲程内燃机 2027
    燃料电池 2036
    甲醇 二冲程内燃机 已上船应用
    四冲程内燃机 2025
    燃料电池 2031
    下载: 导出CSV

    表  10  氢、氨和甲醇的毒性情况

    Table  10.   Toxicity of hydrogen, ammonia and methanol

    燃料类型 毒性
    无毒
    > 18 mg/m3,引起刺激作用
    > 144 mg/m3,永久性损伤
    甲醇 > 285 mg/m3,皮肤侵蚀
    下载: 导出CSV
  • [1] 王丹, 毕研涛. 船运业应用替代燃料实现碳减排的实践及思考[J]. 国际石油经济, 2021, 29(6): 17-23, 34. https://www.cnki.com.cn/Article/CJFDTOTAL-GJJJ202106004.htm

    WANG D, BI Y T. Practice and thinking on carbon emissionreduction by using alternative fuels in the maritime transportindustry[J]. International Petroleum Economy, 2021, 29(6): 17-23, 34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJJJ202106004.htm
    [2] ALI C, OLIVIER F, LAURENT E, et al. Impact of CO2 emission taxation and fuel types on arctic shipping attractiveness[J]. Transportation Research Part D: Transport and Environment, 2022(112): 103491.
    [3] 李庆祥. 我国水路运输碳排放现状及减碳路径分析[J]. 交通节能与环保, 2021, 17(2): 1-4, 12. https://www.cnki.com.cn/Article/CJFDTOTAL-CBJL202102001.htm

    LI Q X. Carbon emission status and carbon reduction pathanalysis of waterway transport in china[J]. Transport EnergyConservation and Environmental Protection, 2021, 17(2): 1-4, 12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CBJL202102001.htm
    [4] 王鹏. 国际航运业碳减排和船舶燃料转型趋势[J]. 国际石油经济, 2021, 29(7): 52-62. https://www.cnki.com.cn/Article/CJFDTOTAL-GJJJ202107009.htm

    WANG P. International shipping decarbonization and fuelstransition[J]. International Petroleum Economy, 2021, 29(7): 52-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJJJ202107009.htm
    [5] HUI X, CHARLES C, STEPHEN S, et al. Alternative fuel options for low carbon maritime transportation: Pathways to2050[J]. Journal of Cleaner Production, 2021(297): 126651.
    [6] 张丽. 航海碳税与我国航运业绿色发展道路[J]. 中国航海, 2018, 41(1): 113-116. doi: 10.3969/j.issn.1000-4653.2018.01.023

    ZHANG L. Shipping carbon tax and green road of Chineseshipping industry[J]. Navigation of China, 2018, 41(1): 113-116. (in Chinese) doi: 10.3969/j.issn.1000-4653.2018.01.023
    [7] 尹琳. 内河油轮LNG燃料动力的应用分析[J]. 船舶, 2020, 31(3): 28-32. doi: 10.19423/j.cnki.31-1561/u.2020.03.028

    YIN L. Application of LNG fuel power on inland oil tanker[J]. Ship & Boat, 2020, 31(3): 28-32. (in Chinese) doi: 10.19423/j.cnki.31-1561/u.2020.03.028
    [8] 涂环. 清洁能源船用适应性综合分析[J]. 中国船检, 2022(1): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ202201023.htm

    TU H. Comprehensive analysis of adaptability for clean energy ships[J]. China Ship Survey, 2022(1): 58-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ202201023.htm
    [9] 邢辉, 李想. 船用替代燃料应用进展[J]. 世界海运, 2023, 46(2): 16-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HYZZ202302003.htm

    XING H, LI X. Progress in the application of marine alternative fuels[J]. World Shipping, 2023, 46(2): 16-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HYZZ202302003.htm
    [10] IMO. Draft life cycle GHG and carbon intensity guidelinesfor maritime fuels[R]. London: IMO, 2020.
    [11] KORBERG A D, BRYNOLF S, GRAHN M, et al. Techno-economic assessment of advanced fuels and propulsionsystems in future fossil-free ships[J]. Renewable and Sustainable Energy Reviews, 2021(142): 110861.
    [12] Oxford Research. Innovation needs for decarbonization ofshipping[R]. Oxford: Oxford Research, 2021.
    [13] 赵羿羽. 全球零排放船舶研发最新进展[J]. 中国船检, 2021(10): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ202110020.htm

    ZHAO Y Y. Latest progress in global zero emission ship research and development[J]. China Ship Survey, 2021(10): 64-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ202110020.htm
    [14] 赵博. 全球低碳船舶项目大盘点[J]. 中国船检. 2021(6): 11-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ202106008.htm

    ZHAO B. Global low carbon ship project overview[J]. ChinaShip Survey, 2021(6): 11-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ202106008.htm
    [15] 徐晓健, 杨瑞, 纪永波, 等. 氢燃料电池动力船舶关键技术综述[J]. 交通运输工程学报, 2022, 22(4): 47-67. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202204004.htm

    XU X J, YANG R, JI Y B, et al. Review on key technologiesof hydrogen fuel cell powered vessels[J]. Journal of Trafficand Transportation Engineering, 2022, 22(4): 47-67. (inChinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202204004.htm
    [16] 瞿小豪, 袁裕鹏, 严新平. 发展电池动力船舶技术助推长江经济带绿色航运发展[J]. 中国水运, 2018(9): 14-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHOG201809006.htm

    QU X H, YUAN Y P, YAN X P. Developing battery powered shiptechnology to promote the development of greenshipping in the Yangtze river economic belt[J]. China WaterTransport, 2018(9): 14-16. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHOG201809006.htm
    [17] IRENA. A pathway to decarbonize the shipping sector by2050[R]. Abu Dhabi: International Renewable Energy Agency, 2021.
    [18] EERE. Energy and the hydrogen economy[R]. WashingtonDistrict of Columbia: EERE, 2013.
    [19] ABS. Sustainability whitepaper: hydrogen as marine fuel[R]. Houston: ABS, 2021.
    [20] Nordic Innovation. Nordic green ammonia powered shipproject report[R]. Oslo: Nordic Innovation, 2021.
    [21] 张运秋, 杨倩倩. 氨燃料在商船上的应用分析[J]. 船舶与海洋工程, 2023, 39(1): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SHZC202301007.htm

    ZHANG Y Q, YANG Q Q. Analysis of ammonia fuel applied on merchant ships[J]. Naval Architecture and OceanEngineering, 2023, 39(1): 34-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHZC202301007.htm
    [22] LEAL A. The industrialization of hydrogen production and its use as fuel intransportation for net-zero emissions[C]. 2021 International Conference on Green Energy, Computingand Sustainable Technology(GECOST), Miri, Malaysia: IEEE, 2021.
    [23] 於晓川, 万晓跃. 氨作为船用零排放燃料的优势, 可行性与挑战分析[J]. 世界海运, 2020, 43(12): 37-39, 48. https://www.cnki.com.cn/Article/CJFDTOTAL-HYZZ202012012.htm

    YU X C, WAN X Y. Analysis of the advantages, feasibility, and challenges of ammonia as a zero-emission fuel forships[J]. World Shipping, 2020, 43(12): 37-39, 48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HYZZ202012012.htm
    [24] Netherlands Maritime Technology. Low energy and near tozero emissions ships[R]. Gorinchem: Netherlands MaritimeTechnology, 2018.
    [25] Nicole Wermuth. Innovative emission free propulsion formaritime applications[R]. Graz: Graz University of Technology, 2021.
    [26] Marine Engine Programme. MAN energy solutions[R]. Munich: MAN, 2020.
    [27] Industry Background from Longspur Research. All at seamethanol and shipping[R]. London: Longspur Research, 2022.
    [28] AIENAZI A, BICER Y, OKONKWO C, et al. Evaluating theutilisation of clean fuels in maritime applications: a techno-economic supply chain optimization[J]. Fuel, 2022(322): 124195.
    [29] DNV GL. Maritime assessment of selected alternative fuelsand technologies[R]. Oslo: DNV, 2019.
    [30] SOLAKIVI T, PAIMANDER A, OJALA L. Cost competitiveness of alternative maritime fuels in the new regulatoryframework[J]. Transportation Research Part D: Transportand Environment, 2022(113): 103500.
    [31] 蒋敏华, 肖平, 刘入维, 等. 氢能在我国未来能源系统中的角色定位及"再电气化"路径初探[J]. 热力发电, 2020, 49(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-RLFD202001001.htm

    JIANG M H, XIAO P, LIU R W, et al. The role of hydrogenenergy in China's future energy system and preliminarystudy on the route of re-electrification[J]. Thermal PowerGeneration, 2020, 49(1): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RLFD202001001.htm
    [32] 王思佳. 为什么是甲醇?[J]. 中国船检, 2022(1): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ202201018.htm

    WANG S J. Why is it methanol?[J]. China Ship Survey, 2022(1): 38-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ202201018.htm
    [33] 李卫东, 李逸龙, 滕霖等". 双碳"目标下的氨能技术与经济性研究进展[J/OL]. (2023-04-07)[2023-04-20]. 化工进展.

    LI W D, LI Y L, TEND L, et al. Research progress on ammonia energy technology and economy under"carbon emissionpeak"and"carbon neutrality"targets[J/OL]. (2023-04-07)[2023-04-20]. Chemical Industry and Engineering Progress. https://doi-org-s.z.library.sh.cn/10.16085/j.issn.1000-6613.2023-0066. (in Chinese)
    [34] PERNA A, JANNELLI E, DIMICCO S, et al. Designing, sizing and economic feasibility of a green hydrogen supplychain for maritime transportation[J]. Energy Conversion andManagement, 2023(278): 116702.
    [35] DNV. Maritime forecast to 2050[R]. Oslo: DNV, 2022.
    [36] KIM K, ROH G, KIM W, et al. A preliminary study on an alternative ship propulsion system fueled by ammonia: Environmental and economic assessments[J]. Journal of MarineScience and Engineering, 2020, 8(3): 183.
    [37] ZOU J H, YANG B. Evaluation of alternative marine fuelsfrom dual perspectives considering multiple vessel sizes[J]. Transportation Research Part D: Transport and Environment, 2023(115): 103583.
    [38] 赵星, 王澎, 抄佩佩, 等. 锂离子电池安全检测传感器研究进展[J]. 交通信息与安全, 2022, 40(6): 127-136. doi: 10.3963/j.jssn.1674-4861.2022.06.013

    ZHAO X, WANG P, CHAO P P, et al. Research progress onsafety detection sensors for lithium-ion batteries [J]. Journalof Transport Information and Safety, 2022, 40(6): 127-136. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.06.013
    [39] GADDUCCI E, LAMBERTI T, RIVAROLO M, et al. Experimental campaign and assessment of a complete 240-kW proton exchange membrane fuel cell power system for maritime applications[J]. International Journal of Hydrogen Energy, 2022, 47(53): 22545-22558.
    [40] 蔡旭雯, 谭祖胜, 夏军, 等. 纯电池动力船舶续航力适宜性与经济性研究[J]. 船舶与海洋工程, 2022, 38(6): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-SHZC202206010.htm

    CAI X W, TAN Z S, XIA J, et al. A study on the endurance suitability and economy of battery powered ships [J]. NavalArchitecture and Ocean Engineering, 2022, 38(6): 53-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHZC202206010.htm
    [41] MarHySafe. Handbook for hydrogen-fueled vessels[R]. Oslo: DNV, 2021.
    [42] LAGEMANN B, LINDSTAD E, FAGERHOLT K, et al. Optimal ship lifetime fuel and power system selection[J]. Transportation Research Part D: Transport and Environment, 2022(102): 103145.
    [43] Group Technology & Research. Ammonia as a marine fuel[R]. Oslo: DNV, 2020.
    [44] 汪颖异, 金强, 潘放. 国际航行船舶替代燃料应用预测[J]. 船舶, 2022, 33(5): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ202205002.htm

    WANG Y Y, JIN Q, PAN F. Application forecast of alternative fuels for international ships[J]. Ship & Boat, 2022, 33(5): 21-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ202205002.htm
    [45] RIVAROLO M, RATTAZZI D, MAGISTRI L, et al. Multi-criteria comparison of power generation and fuel storage solutions for maritime application[J]. Energy Conversionand Management, 2021(244): 114506.
    [46] 章强, 管华婷. 国际海事组织航运碳减排政策体系研究[J]. 世界海运, 2022, 45(12): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HYZZ202212002.htm

    ZHANG Q, GUAN H T. Research on the international maritime organization's carbon reduction policy system for shipping[J]. World Shipping, 2022, 45(12): 6-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HYZZ202212002.htm
    [47] 石珊, 徐天南. 渔船新能源技术应用前景分析[J]. 船舶, 2022, 33(5): 29-37. https://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ202205003.htm

    SHI S, XU T N. Analysis on application prospect of new energy technology for fishing vessels[J]. Ship & Boat, 2022, 33(5): 29-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ202205003.htm
    [48] 蔡梅江, 曹伟, 胡冰. 北极东北航道经济性及未来发展趋势分析[J]. 交通信息与安全, 2020, 38(3): 105-111, 147. doi: 10.3963/j.jssn.1674-4861.2020.03.014

    CAI M J, CAO W, HU B. An analysis of economic and future development of arctic northeast passage[J]. Journal ofTransport Information and Safety. 2020, 38(3): 105-111, 147. (in Chinese). doi: 10.3963/j.jssn.1674-4861.2020.03.014
    [49] 周晓, 冷瑜. 航运业碳减排和零碳发展面临的挑战与应对建议[J]. 上海船舶运输科学研究所学报, 2021, 44(4): 63-68, 83. https://www.cnki.com.cn/Article/CJFDTOTAL-JTYS202104011.htm

    ZHOU X, LENG Y. The challenges and countermeasures ofdeveloping zero-emission shipping[J]. Journal of ShanghaiShip and Shipping Research, 2021, 44(4): 63-68, 83. (inChinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTYS202104011.htm
    [50] 周红军, 周颖, 徐春明. 中国碳中和目标下转化的思考与实践[J]. 化工进展, 2022, 41(6): 3381-3385. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202206057.htm

    ZHOU H J, ZHOU Y, XU C M. Exploration of the conversion under China's carbon neutrality goal[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3381-3385. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202206057.htm
    [51] 汪颖异, 魏梅. 绿色低碳燃料船舶总拥有成本分析[J]. 船舶, 2021, 32(5): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ202105002.htm

    WANG Y Y, WEI M. Analysis of total cost of ownership forgreen low carbon ships [J]. Ship & Boat, 2021, 32(5): 10-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ202105002.htm
  • 加载中
图(1) / 表(10)
计量
  • 文章访问数:  894
  • HTML全文浏览量:  387
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-05
  • 网络出版日期:  2023-06-19

目录

    /

    返回文章
    返回