留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于信道状态信息的船舶驾驶台人员检测及活跃度评价方法

张屹凡 陈梦达 王露 陈聪 刘克中 陈默子

张屹凡, 陈梦达, 王露, 陈聪, 刘克中, 陈默子. 基于信道状态信息的船舶驾驶台人员检测及活跃度评价方法[J]. 交通信息与安全, 2023, 41(4): 88-100. doi: 10.3963/j.jssn.1674-4861.2023.04.010
引用本文: 张屹凡, 陈梦达, 王露, 陈聪, 刘克中, 陈默子. 基于信道状态信息的船舶驾驶台人员检测及活跃度评价方法[J]. 交通信息与安全, 2023, 41(4): 88-100. doi: 10.3963/j.jssn.1674-4861.2023.04.010
ZHANG Yifan, CHEN Mengda, WANG Lu, CHEN Cong, LIU Kezhong, CHEN Mozi. A Method for Detecting Personnel at Vessel Bridge and Evaluating Level of Activities Based on Channel State Information[J]. Journal of Transport Information and Safety, 2023, 41(4): 88-100. doi: 10.3963/j.jssn.1674-4861.2023.04.010
Citation: ZHANG Yifan, CHEN Mengda, WANG Lu, CHEN Cong, LIU Kezhong, CHEN Mozi. A Method for Detecting Personnel at Vessel Bridge and Evaluating Level of Activities Based on Channel State Information[J]. Journal of Transport Information and Safety, 2023, 41(4): 88-100. doi: 10.3963/j.jssn.1674-4861.2023.04.010

基于信道状态信息的船舶驾驶台人员检测及活跃度评价方法

doi: 10.3963/j.jssn.1674-4861.2023.04.010
基金项目: 

国家自然科学基金面上项目 51979216

湖北省自然科学基金创新群体项目 2021CFA001

湖北省自然科学基金青年项目 20221J0059

详细信息
    作者简介:

    张屹凡(1997—),硕士研究生.研究方向:智能航运、无线感知.E-mail:yifan.zhang@whut.edu.cn

    通讯作者:

    刘克中(1976—),博士,教授.研究方向:水上交通安全.E-mail: kzliu@whut.edu.cn

  • 中图分类号: U691+.31

A Method for Detecting Personnel at Vessel Bridge and Evaluating Level of Activities Based on Channel State Information

  • 摘要: 船舶驾驶台人员包括按照规定要求的常规值班人员和特殊情况下额外的瞭望人员或船长、引航员等,驾驶台人员活跃度是判断其工作状态的重要指标之一。传统的基于计算机视觉的人员检测方法在面对船舶驾驶台遮挡物多、夜间或恶劣天气下光线不足等问题时,精度明显降低。为解决该问题,提出了1种基于普通商用Wi-Fi设备的活跃度感知方法。由于船体材质、结构特点以及变化的运动状态导致动态多径多、信号噪声强,对Wi-Fi设备造成干扰,为此设计了值班高关联度数据(duty high correlation data,DHCD)选择模块及基于信道状态信息(channel state information,CSI)的多层级特征提取模块。DHCD选择模块分析驾驶台人员不同航行、值班情况下的CSI特点,对比0~5人在驾驶台内值班、工作时的信道变化,利用模糊C-means聚类算法提取CSI中对值班人员行为反应最灵敏的信道,去除对信号噪声反应敏感的信道信息;通过多层级特征提取模块计算去噪后CSI数据的幅值与相位离散度、多链路融合离散度、变异指数等多层特征,作为活跃度评价基础参数。依据驾驶台值班要求设计了驾驶台人员活跃度评价模块,采用支持向量机算法判断驾驶台人员数量,采用客观赋权法得到基础参数权重,结合人数信息与权重信息评价驾驶台人员活跃度。实验结果表明:使用DHCD选择模块和多层级模块处理后的多层级特征将驾驶台人员数量检测精度提升至89.6%,对比直接使用原始数据时检测精度提升7.1%。在夜间、雨雾天气等光照不足情况下,基于计算机视觉方法的检测精度会由光线充足时的96.2%降至60.3%,而该方法监测精度不会降低。因此,基于CSI的驾驶台人员活跃度检测方法丰富了驾驶台人员检测算法,能有效识别船舶驾驶台人员是否符合安全值班的基本要求。

     

  • 图  1  船舶驾驶室无线检测示意图

    Figure  1.  Schematic diagram of wireless detection on the ship's bridge

    图  2  室内不同人数信道状态信息相位图

    Figure  2.  Phase diagram of channel state information for different numbers of people indoors

    图  3  室内不同人数信道状态信息幅值图

    Figure  3.  Phase diagram of channel state information for different numbers of people indoors

    图  4  3人不同动作信道状态信息对比图

    Figure  4.  Comparison diagram of channel state information of different actions of a three persons

    图  5  原始数据与筛选后高关联度数据值班驾驶人信号幅值离散度对比图

    Figure  5.  Contrast diagram of amplitude dispersion of duty crew signal between raw data and CHCD

    图  6  原始数据与筛选后高关联度数据值班驾驶人相位离散度对比图

    Figure  6.  Contrast diagram of phase dispersion of duty crew signal between raw data and CHCD

    图  7  不同动作活跃度值对比拟合图

    Figure  7.  Graph of different actions activity

    图  8  船舶驾驶人活跃度检测流程

    Figure  8.  Process of OOW activity detection

    图  9  实船驾驶室实验场景图

    Figure  9.  Experimental scene of the cab of the real ship

    图  10  不同值班情况多人活跃度对比评价结果

    Figure  10.  Results of multi-person activity in different duty situations comparative evaluation

    图  11  一般数据与高关联度数据活跃度评价结果对比图

    Figure  11.  Result of comparison chart of activity evaluation between general data and high correlation data

    表  1  室内值班人数分类结果

    Table  1.   Result of indoor duty number classification

    人数 准确率/%
    0 96.3
    1 93.2
    2 91.5
    3 89.2
    4 86.7
    下载: 导出CSV

    表  2  船舶驾驶室值班人数要求

    Table  2.   Requirements for the number of people on duty in the ship bridge

    航行时间/h 值班人数/人
    船舶吨位>3 000 船舶吨位>1 000~3 000 船舶吨位>600~1 000 船舶吨位>300~600 船舶吨位>100~300 船舶吨位≤ 100
    < 10 4 3 1 1 1 1
    10~16 4 3 2 2 2 2
    >16 6 4 3 2 2 2
    下载: 导出CSV

    表  3  船舶驾驶室值班活跃度要求

    Table  3.   Requirements for the activity of people on duty in the ship bridge

    航行时间/h 值班活跃度等级
    船舶吨位>3 000 船舶吨位>1 000~3 000 船舶吨位>600~1 000 船舶吨位>300~600 船舶吨位>100~300 船舶吨位≤ 100
    < 10
    10~16
    >16
    下载: 导出CSV

    表  4  特征值组对准确率影响

    Table  4.   The influence of different feature accuracy

    活跃度等级 准确率/%
    A B C
    99.1 98.3 97.2
    95.6 80.3 83.6
    91.2 83.3 66.5
    83.7 72.6 60.4
    下载: 导出CSV

    表  5  高关联度数据准确率的影响

    Table  5.   The influence of CHCD accuracy

    驾驶室人数 准确率/%
    一般数据 CHCD 准确率差/%
    1 94.7 98.3 3.6
    2 87 93.4 6.4
    3 76.4 85.6 9.2
    4 72.2 81.1 8.9
    下载: 导出CSV
  • [1] EMSA. Review of marine casualties and incidents[EB/OL]. (2019-4-23)[2022-9-23]. http://www.emsa.europa.eu/news-apress-ce
    [2] 交通运输部海事局. 2018年水上交通安全形势分析[J]. 中国海事, 2019(5): 32-33 https://www.cnki.com.cn/Article/CJFDTOTAL-HSZG201905018.htm

    China MSA. Analysis on waterborne transport safety situation for year 2018[J]. China Maritime Safety, 2019(5): 32-33(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HSZG201905018.htm
    [3] DJANI M, ROBERT M, BARIC M. Deficiencies in learning COLREGs and new teaching methodology for nautical engineering students and seafarers in lifelong learning programs[J]. The Journal of Navigation, 2016, 69(4): 765-776. doi: 10.1017/S037346331500096X
    [4] BERGASA L M, NUEVO J, SOTELO M A, et al. Real-time system for monitoring driver vigilance[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(1): 63-77. doi: 10.1109/TITS.2006.869598
    [5] MARGARETA L, DUKIC T. Show me where you look and I'll tell you if you're safe: Eye tracking of maritime watchkeepers[C] Nordic Ergonomics Society annual conference, Lysekil, Sweden: Nordic Ergonomics Society, 2007.
    [6] YOUN I H, PARK D J, YIM J B. Analysis of lookout activity in a simulated environment to investigate maritime accidents caused by human error[J]. Applied Sciences, 2018, 9(1): 4-10. doi: 10.3390/app9010004
    [7] 杨世超. 基于红外图像的驾驶人疲劳监控系统研究[D]. 沈阳: 东北大学, 2015.

    SHI C Y. Research of Driver Fatigue Detecting Based on Infrared Image[D]. Shengyang: Northeastern University, 2011(in Chinese)
    [8] 赵晓华, 房瑞雪, 毛科俊. 基于生理信号的驾驶疲劳声音对策有效性实验[J]. 西南交通大学学报, 2010, 45(3): 457-463. doi: 10.3969/j.issn.0258-2724.2010.03.024

    ZHAO X H, FANG R X, MAO K J. Test on the effectiveness of sound as a countermeasure against driving fatigue based on physiological signals[J]. Journal of Southwest Jiaotong University, 2010, 45(3): 457-463. (in Chinese) doi: 10.3969/j.issn.0258-2724.2010.03.024
    [9] 钟铭恩, 吴平东, 彭军强, 等. 基于脑电信号的驾驶人情绪状态识别研究[J]. 中国安全科学学报, 2011(9): 64-69.

    ZHONG M E, WU P D, PENG J Q, et al. Study on an emotional state recognition technology based on drivers'EEGs[J]. China Safety Science Journal, 2011, 21(9): 64-69. (in Chinese)
    [10] 周锋, 吴华锋, 孙志宽. 1种新型船舶驾驶台值班防疲劳监控系统设计[J]. 船海工程, 2017, 46(2): 170-174. doi: 10.3963/j.issn.1671-7953.2017.02.040

    ZHOU F, WU H F, SUN Z K. Design of bridge navigation watch alarm system based on image processing[J]. Ship & Ocean Engineering, 2017, 46(2): 170-174(in Chinese) doi: 10.3963/j.issn.1671-7953.2017.02.040
    [11] 陈家豪, 刘克中, 陈默子, 等. 基于信道状态信息的船舶敏感区域入侵检测方法[J]. 大连海事大学学报, 2019, 45(1): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201901011.htm

    CHEN J H, LIU K Z, CHEN M Z, et al. Intrusion detection method of ships sensitive regions based on channel state information[J]. Journal of Dalian Maritime University, 2019, 45(1): 89-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201901011.htm
    [12] CHEN M Z, Ma J, ZENG X M. MD-alarm: A novel manpower detection method for ship bridge watchkeeping using Wi-Fi signals[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71(3): 1-13.
    [13] LIU K Z, WANG Y, CHEN M Z, et al. Deep learning based wireless human motion tracking for mobile ship environments[J]. IEEE Internet of Things Journal, 2022, 23(9): 24186-24198.
    [14] HALPRIN D, HU W, SHETH A, et al. Tool release: Gathering 802.11 n traces with channel state information[J]. ACM SIGCOMM Computer Communication Review, 2011, 41(1): 53-53. doi: 10.1145/1925861.1925870
    [15] 陈伟炯. 船舶安全与管理[M]. 大连: 大连海事大学出版社, 1998.

    CHEN W J. Ship safety and management[M]. Dalian: Dalian Maritime University Press, 1998. (in Chinese)
    [16] 黄琛, 陈德山, 吴兵, 严新平. 船舶航行交通事件实时检测技术研究现状与展望[J]. 交通信息与安全, 2022, 40(6): 1-11. doi: 10.3963/j.jssn.1674-4861.2022.06.001

    HUANG C, CHEN D S, WU B, YAN X P. A real-time detection of nautical traffic events: A review and prospect[J]. Journal of Transport Information and Safety, 2022, 40(6): 1-11. doi: 10.3963/j.jssn.1674-4861.2022.06.001
    [17] SIMONE D D, SANCTIC D M, CIANCA E, et al. A trained-once crowd counting method using differential wifi channel state information[C]. A Campus-wide Testbed for Studying Mobile Physical Activities, New York, United States: ACM, 2016.
    [18] QIAN K, WU C S, YANG Z, et al. Widar2.0: Passive human tracking with a single Wi-Fi link[C] ACM International Conference on Mobile Systems, Applications, and Services, New York, United States: ACM, 2016.
    [19] YANG Z, WU D, XIONG J, et al. FarSense: Pushing the range limit of WiFi-based respiration sensing with a CSI ratio of two antennas[J]. International Joint Conference on Pervasive and Ubiquitous Computing, 2019, 3(3): 1-26.
    [20] DAVIES L, GATHER U, The identification of multiple outliers, Journal of the American Statistical Association[J]. Journal of the American Statistical Association, 1993, 88(423): 782-792.
    [21] PAIK B G, CHO S R, PARK B J, et al. Characteristics of wireless sensor network for full-scale ship application[J]. Journal of Marine Science and Technology, 2009, 14(1): 115-126.
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  516
  • HTML全文浏览量:  267
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-30
  • 网络出版日期:  2023-11-23

目录

    /

    返回文章
    返回