留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑碳排放效果的城轨列车开行方案编制方法

林立 孟学雷 程晓卿 韩正 付艳欣

林立, 孟学雷, 程晓卿, 韩正, 付艳欣. 考虑碳排放效果的城轨列车开行方案编制方法[J]. 交通信息与安全, 2023, 41(5): 176-184. doi: 10.3963/j.jssn.1674-4861.2023.05.018
引用本文: 林立, 孟学雷, 程晓卿, 韩正, 付艳欣. 考虑碳排放效果的城轨列车开行方案编制方法[J]. 交通信息与安全, 2023, 41(5): 176-184. doi: 10.3963/j.jssn.1674-4861.2023.05.018
LIN Li, MENG Xuelei, CHENG Xiaoqing, HAN Zheng, FU Yanxin. A Method for Developing Service Plan of Urban Rail Train Considering Carbon Emissions Impacts[J]. Journal of Transport Information and Safety, 2023, 41(5): 176-184. doi: 10.3963/j.jssn.1674-4861.2023.05.018
Citation: LIN Li, MENG Xuelei, CHENG Xiaoqing, HAN Zheng, FU Yanxin. A Method for Developing Service Plan of Urban Rail Train Considering Carbon Emissions Impacts[J]. Journal of Transport Information and Safety, 2023, 41(5): 176-184. doi: 10.3963/j.jssn.1674-4861.2023.05.018

考虑碳排放效果的城轨列车开行方案编制方法

doi: 10.3963/j.jssn.1674-4861.2023.05.018
基金项目: 

国家自然科学基金项目 71861022

甘肃省自然科学基金项目 22JR5RA355

甘肃省优秀研究生“创新之星”项目 2023CXZX-522

详细信息
    作者简介:

    林立(1995—),博士研究生. 研究方向:轨道交通运行管理、决策优化. E-mail:linli1217@foxmail.com

    通讯作者:

    孟学雷(1979—),博士,教授. 研究方向:轨道交通运行管理、决策优化等研究. E-mail:mxl@mail.lzjtu.cn

  • 中图分类号: U231+.92

A Method for Developing Service Plan of Urban Rail Train Considering Carbon Emissions Impacts

  • 摘要: 为解决开行方案编制不合理导致的乘客出行舒适度差、企业运营成本高、碳排放量大等问题,研究了1种考虑碳排放效果的城轨列车开行方案编制方法。在目标函数中增加了对乘客舒适度及碳排放效果的考虑,同时限定了能力、服务频率及交路起讫站设置等约束,进而建立了多交路、多编组的城轨列车开行方案模型。考虑到模型变量维度高、求解复杂等特点,对经典人工蜂群算法中蜜源更新策略进行改进并应用于模型求解。利用大量数据实验对参数进行标定,计算分析目标函数权重设定对求解结果的影响,与单一交路、单一编组的模式进行结果对比分析,并与传统人工蜂群算法展开求解质量及收敛速度的比较分析。结果表明:①目标函数值与其权重系数呈现负相关,由于解空间的限制,目标函数值变化范围有限;②较之单一交路运营模式,大小交路多编组模式下企业运营成本降低了18.22%,碳排放量减少了18.17%,二者降幅都比较显著;③较之单一编组运营模式,大小交路多编组模式下乘客出行成本降低了3.37%,企业运营成本下降了3.12%,碳排放量减少了3.32%,所有目标函数值均得到了改善;④较之传统人工蜂群算法,改进后算法求得的总目标值下降了2.49%,收敛速度提高了12.84%。结果验证了所提方法对于降低企业成本、减少碳排放量的有效性。

     

  • 图  1  运行线路示意图

    Figure  1.  Schematic diagram of train running line

    图  2  上行客流分类示意图

    Figure  2.  Passenger flow classification in up direction

    图  3  目标函数随权重变化曲线

    Figure  3.  Curve of objective functions changing with different weights

    图  4  算法迭代过程图

    Figure  4.  Iterative process diagram of two algorithms

    表  1  模型相关参数取值

    Table  1.   Values of the related parameters

    参数 含义 取值 单位
    c 非工作时间价值系数 25 元/h
    ttrans 单个乘客1次换乘所需的时间 4.8 min
    v 列车平均运行速度 35 km/h
    t 单个乘客平均上下车时间 1.51 s
    n 每节车厢的车门对数 5
    m 短编组列车的编组数量 4
    m 长编组列车的编组数量 6
    Am 短编组列车的定员 121 0 人/列
    Am 长编组列车的定员 186 0 人/列
    ε 车辆公里费用 60 元/(辆·km)
    η 火力发电比例 0.8
    Pμm 短编组列车的黏着质量 146.2 t
    Pμm 长编组列车的黏着质量 222.2 t
    ξmin 最小满载率 50 %
    ξmax 最大满载率 120 %
    Zmin 小交路车站数量的最小值 8
    Zmax 小交路车站数量的最大值 23
    Ο 可运用的车辆数 210
    fmin 最小服务频率 6
    f线 线路通过能力 30
    下载: 导出CSV

    表  2  不同权重对应的目标函数值

    Table  2.   The objective functions value under different weights

    权重 Sa Sb f1m/列 f1m/列 f2m/列 f2m/列 W1/元 W2/元 W3/kg U
    (1, 3, 6) 10 17 4 13 0 4 805 752.63 289 728.12 17 612.24 0.345
    (2, 3, 5) 10 18 4 14 0 6 722 767.16 317 298.72 19 291.77 0.402
    (3, 3, 4) 10 18 5 16 0 6 608 919.84 364 172.64 22 137.89 0.510
    (4, 3, 3) 7 18 5 16 2 6 548 566.71 377 858.40 23 479.60 0.534
    (5, 3, 2) 7 20 6 16 2 6 515 722.99 403 631.04 24 524.76 0.560
    (6, 3, 1) 7 22 6 16 2 6 501 898.38 409 655.52 24 890.88 0.571
    下载: 导出CSV

    表  3  不同模型对比分析

    Table  3.   Comparative analysis of different models

    模型 Sa Sb f1m/列 f1m/列 f2m/列 f2m/列 W1/元 W2/元 W3/kg U
    本文 10 18 5 16 0 6 608 919.84 364 172.64 22 137.89 0.510
    单交路 8 20 0 0 584 132.43 445 302.24 27 052.15 0.611
    单编组 10 18 0 20 0 6 630 135.51 375 891.12 22 898.34 0.535
    下载: 导出CSV

    表  4  不同算法计算结果对比分析

    Table  4.   Comparative analysis of different algorithms

    算法 迭代次数 Sa Sb f1m/列 f1m/列 f2m/列 f2m/列 W1/元 W2/元 W3/kg U
    IABC 190 10 18 5 16 0 6 608 919.84 364 172.64 22 137.89 0.510
    ABC 218 10 20 4 17 0 6 605 254.32 374 617.56 22 783.49 0.523
    下载: 导出CSV
  • [1] 周琪, 梁肖, 黄俊生, 等. 城市轨道交通碳排放效率与影响因素研究[J]. 交通运输系统工程与信息, 2023, 23(1): 230-38, 85.

    ZHOU Q, LIANG X, HUANG J S, et al. Carbon emission efficiency and influencing factors analysis of urban rail transits[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(1): 230-38, 85. (in Chinese)
    [2] 潘寒川, 陆俊波, 胡华, 等. 客货混运下的城轨时刻表与流量控制协同优化研究[J]. 交通运输系统工程与信息, 2023, 23(2): 187-196.

    PAN H C, LU J B, HU H, et al. Collaborative optimization of urban rail timetable and flow control under mixed passenger and freight transportation[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23 (2): 187-196. (in Chinese)
    [3] 马阳阳, 孟学雷, 贾宝通, 等. 基于列车运行时间偏差惩罚的高速列车节能优化方法[J]. 交通信息与安全, 2021, 39 (4): 84-91. doi: 10.3963/j.jssn.1674-4861.2021.04.011

    MA Y Y, MENG X L, JIA B T, et al. An energy-saving optimization method of high-speed trains based on time deviation penalty during train operation[J]. Journal of Transport Information and Safety, 2021, 39(4): 84-91. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.04.011
    [4] 刘杰, 彭其渊, 殷勇. 低碳背景下的多式联运路径规划[J]. 交通运输系统工程与信息, 2018, 18(6): 243-249.

    LIU J, PENG Q Y, YIN Y. Multimodal transportation route planning under low carbon emissions background[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(6): 243-249. (in Chinese)
    [5] 林立, 孟学雷, 程晓卿, 等. 疫情常态化防控条件下城轨列车开行方案研究[J]. 铁道科学与工程学报, 2022, 19(12): 3515-3525.

    LIN L, MENG X L, CHENG X Q, et al. Research on train operation plan of urban rail transit under the condition of normalized epidemic prevention and control[J]. Journal of Railway Science and Engineering, 2022, 19(12): 3515-3525. (in Chinese)
    [6] 李依娜, 孟学雷, 秦永胜, 等. 多网融合条件下市域列车开行方案编制方法[J]. 交通信息与安全, 2023, 41(2): 129-138. doi: 10.3963/j.jssn.1674-4861.2023.02.014

    LI Y N, MENG X L, QIN Y S, et al. A method for developing operation plans of community railways under the condition of multi-network integration[J]. Journal of Transport Information and Safety, 2023, 41(2): 129-138. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.02.014
    [7] 许得杰, 毛保华, 陈绍宽, 等. 考虑开行比例的大小交路列车开行方案优化[J]. 交通运输工程学报, 2021, 21(2): 173-186.

    XU D J, MAO B H, CHEN S K, et al. Optimization of operation scheme for full-length and short-turn routings considering operation proportion[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 173-186. (in Chinese)
    [8] 石俊刚, 杨静, 周峰, 等. 地铁快慢车运行计划综合优化模型[J]. 交通运输工程学报, 2018, 18(1): 130-138. doi: 10.3969/j.issn.1671-1637.2018.01.012

    SHI J G, YANG J, ZHOU F, et al. Integrate optimization model of operation schedule for metro express/local train[J]. Journal of Traffic and Transportation Engineering, 2018, 18 (1): 130-138. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.01.012
    [9] 陈治亚, 欧阳灏, 徐光明, 等. 基于出行可靠性的城轨线路多时段发车频率优化[J]. 铁道科学与工程学报, 2022, 19 (12): 3526-3535.

    CHEN Z Y, OUYANG H, XU G M, et al. Multi-period frequency optimization of urban rail lines based on travel reliability[J]. Journal of Railway Science and Engineering, 2022, 19(12): 3526-3535. (in Chinese)
    [10] 杨安安, 孙继营, 汪波, 等. 基于虚拟编组技术的大小交路列车开行方案优化[J]. 北京交通大学学报, 2022, 46 (4): 9-14.

    YANG A A, SUN J Y, WANG B, et al. Optimization of virtual-coupling-orientated train operation plan based on full-length and short-turn routing[J]. Journal of Beijing Jiaotong University, 2022, 46(4): 9-14. (in Chinese)
    [11] DING X Q, GUAN S T, SUN D J, et al. Short turning pattern for relieving metro congestion during peak hours: the substance coherence of Shanghai, China[J]. European Transport Research Review, 2018, 10(2): 1-11.
    [12] LI Z Y, ZHAO J, PENG Q Y. Train service design in an urban rail transit line incorporating multiple service routes and multiple train compositions[J]. Transportation Research Part C: Emerging Technologies, 2021, 123: 102959. doi: 10.1016/j.trc.2020.102959
    [13] LIN L, MENG X L, CHENG X Q, et al. Train service plan design under the condition of multimodal rail transit systems integration and interconnection[J/OL]. (2023-02-14)[2023-09-29]. https://doi.org/10.1155/2023/8275191.
    [14] 戴延泽, 占曙光. 考虑碳排放的城轨开行大小交路方案分析[J]. 铁道科学与工程学报, 2022, 19(12): 3546-3556.

    DAI Y Z, ZHAN S G. Analysis of full-length and short-turn routing of urban rail transit considering carbon emission[J]. Journal of Railway Science and Engineering, 2022, 19 (12): 3546-3556. (in Chinese)
    [15] HUANG K, LIAO F X, GAO Z Y. An integrated model of energy-efficient timetabling of the urban rail transit system with multiple interconnected lines[J]. Transportation Research Part C: Emerging Technologies, 2021, 129: 103171. doi: 10.1016/j.trc.2021.103171
    [16] 姚恩建, 张金萌, 郇宁. 效率与公平导向下城轨大小交路开行方案优化[J]. 华南理工大学学报(自然科学版), 2020, 48(5): 41-48, 57.

    YAO E J, ZHANG J M, HUAN N. Equality-efficiency balance-oriented optimization of long-short route strategy in urban rail transit[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(5): 41-48, 57. (in Chinese)
    [17] 汤莲花, 徐行方. 基于双层规划的市郊轨道交通多交路快慢车开行方案优化研究[J]. 交通运输系统工程与信息, 2018, 18(3): 152-159.

    TANG L H, XU X F. Optimizing train plan with multi-routing and express-local modes for suburban rail transit based on bi-level programming[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18 (3): 152-159. (in Chinese)
    [18] GEERLINGS H, VAN DUIN R. A new method for assessing CO2-emissions from container terminals: a promising approach applied in Rotterdam[J]. Journal of Cleaner Production, 2011, 19(6): 657-666.
    [19] 林立. 应急条件下区域城际列车开行方案研究[D]. 兰州: 兰州交通大学, 2019.

    LIN L. Study on regional intercity train operation plan under emergency condition[D]. Lanzhou: Lanzhou Jiaotong University, 2019. (in Chinese)
    [20] HAN Z L, CHEN M, SHAO S Y, et al. Improved artificial bee colony algorithm-based path planning of unmanned autonomous helicopter using multi-strategy evolutionary learning[J]. Aerospace Science and Technology, 2022, 122: 107374. doi: 10.1016/j.ast.2022.107374
    [21] ETMINANIESFAHANI A, GU H, SALEHIPOUR A. ABFIA: A hybrid algorithm based on artificial bee colony and Fibonacci indicator algorithm[J]. Journal of Computational Science, 2022, 61(5): 101651.
    [22] WANG Y C, JIAO J, LIU J H, et al. A labor division artificial bee colony algorithm based on behavioral development[J]. Information Sciences: An International Journal, 2022, 606: 152-172. doi: 10.1016/j.ins.2022.05.065
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  356
  • HTML全文浏览量:  191
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-02
  • 网络出版日期:  2024-01-18

目录

    /

    返回文章
    返回