留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于C-Informer模型的船舶轨迹预测方法

陈立家 周乃祺 李世刚 刘克中 王凯 周阳

陈立家, 周乃祺, 李世刚, 刘克中, 王凯, 周阳. 基于C-Informer模型的船舶轨迹预测方法[J]. 交通信息与安全, 2023, 41(6): 51-60. doi: 10.3963/j.jssn.1674-4861.2023.06.006
引用本文: 陈立家, 周乃祺, 李世刚, 刘克中, 王凯, 周阳. 基于C-Informer模型的船舶轨迹预测方法[J]. 交通信息与安全, 2023, 41(6): 51-60. doi: 10.3963/j.jssn.1674-4861.2023.06.006
CHEN Lijia, ZHOU Naiqi, LI Shigang, LIU Kezhong, WANG Kai, ZHOU Yang. A Method of Ship Trajectory Prediction Based on a C-Informer Model[J]. Journal of Transport Information and Safety, 2023, 41(6): 51-60. doi: 10.3963/j.jssn.1674-4861.2023.06.006
Citation: CHEN Lijia, ZHOU Naiqi, LI Shigang, LIU Kezhong, WANG Kai, ZHOU Yang. A Method of Ship Trajectory Prediction Based on a C-Informer Model[J]. Journal of Transport Information and Safety, 2023, 41(6): 51-60. doi: 10.3963/j.jssn.1674-4861.2023.06.006

基于C-Informer模型的船舶轨迹预测方法

doi: 10.3963/j.jssn.1674-4861.2023.06.006
基金项目: 

国家重点研发计划项目 2019YFB1600603

详细信息
    通讯作者:

    陈立家(1979—),博士,副教授. 研究方向:智能航海与仿真。E-mail: navisky@qq.comleakeliu@163.com

  • 中图分类号: U675.79

A Method of Ship Trajectory Prediction Based on a C-Informer Model

  • 摘要: 船舶在复杂环境中的航行受风浪、水深、船舶性能等多种不确定因素的影响,利用数学模型难以准确定义和反映船舶轨迹变化规律。针对此问题,研究了1种基于特征工程及神经网络的船舶运动轨迹多步预测方法,将轨迹预测任务分为数据处理及模型预测2个部分:①数据处理模块利用特征工程的方法对AIS轨迹数据进行预处理,首先对原始AIS数据进行清洗,然后利用最大信息系数筛选出与位置预测任务高度相关的特征,并引入变步长的时间间隔信息,解决现有模型只能选取固定时间间隔的数据进行训练和预测的问题,最后重构出高质量的船舶轨迹序列;②模型预测模块构建基于C-Informer的船舶轨迹预测模型,利用Informer模型的多头概率稀疏自注意力机制,降低网络模型的时间复杂度,同时基于生成式解码提高预测速度,通过引入因果卷积模块,增加模型对相邻时间轨迹特征的敏感程度,以弥补Informer模型在局部信息抽取时的不足,使模型更适应于船舶轨迹预测任务。基于南京港附近船舶AIS数据的实验结果表明:C-Informer模型的轨迹预测整体均方误差为1.72×10-7,平均绝对误差为2.43×10-4,与原始的Informer模型相比分别降低28.6%和31.9%,且使用筛选后的特征组合训练C-Informer模型,与只包含经纬度的特征组合相比,均方误差和平均绝对误差分别降低57.7%和42.1%。在对不同时间步长的轨迹进行预测时,C-Informer模型预测时间比长短期记忆网络模型最多减少了69.6%,损失最多降低了75.8%。

     

  • 图  1  轨迹预测方法流程

    Figure  1.  Process of trajectory prediction method

    图  2  不同特征对船舶位置影响

    Figure  2.  The impact of different features on ship position

    图  3  C-Informer网络结构图

    Figure  3.  C-Informer network structure diagram

    图  4  南京港口交通流情况图

    Figure  4.  Nanjing port traffic flow

    图  5  不同模型轨迹预测迭代图

    Figure  5.  Iterative plots of different model trajectory predictions

    图  6  预测时间随步长变化效果对比

    Figure  6.  Comparison of the effect of change in prediction time with step size

    图  7  预测精度随步长变化效果对比

    Figure  7.  Comparison of the effect of change in prediction accuracy with step size

    图  8  预测距离误差

    Figure  8.  Predicted distance deviation

    图  9  轨迹预测效果图

    Figure  9.  Effect diagram of trajectory prediction

    表  1  船舶AIS动态数据

    Table  1.   AIS dynamic data of ships

    船舶识别码 纬度/(°) 经度/(°) 航速/(m/s) 航向/(°) 船艏向/(°) 转向率/[(°)/min] 时间
    413 763 957 31.838 547 118.503 255 2.26 191.2 191 5.25 05-06-2023 12:46:08
    413 763 957 31.837 962 118.503 1 2.26 193 193 5.25 05-06-2023 12:46:36
    413 763 957 31.837 103 118.502 823 2.31 196.2 196 5.25 05-06-2023 12:47:20
    413 764 624 31.861 958 118.539 65 2.727 17.5 17 0 05-06-2023 12:44:27
    413 764 624 31.862 71 118.539 903 2.881 16.4 16 0 05-06-2023 12:45:05
    413 764 624 31.863 488 118.540 18 2.932 16.6 16 0 05-06-2023 12:45:28
    下载: 导出CSV

    表  2  不同特征组合对轨迹预测影响

    Table  2.   The impact of different feature combinations on trajectory prediction

    特征组合 MSE MAE
    组合1 4.07×10-7 4.20×10-4
    组合2 1.94×10-7 2.85×10-4
    组合3 1.72×10-7 2.43×10-4
    下载: 导出CSV

    表  3  不同模型预测最终结果

    Table  3.   Final results predicted by different models

    预测模型 MSE MAE
    C-Informer 1.72×10-7 2.43×10-4
    Informer 2.41×10-7 3.57×10-4
    LSTM 6.21×10-7 5.51×10-4
    下载: 导出CSV

    表  4  预测经纬度偏差

    Table  4.   Predicted latitude and longitude deviation

    航行状态 平均偏差 最大偏差 最小偏差 平均误差距离/m
    经度/(°) 纬度/(°) 经度/(°) 纬度/(°) 经度/(°) 纬度/(°)
    直行 1.73×10-4 2.28×10-4 4.3×10-4 3.6×10-4 1×10-5 3×10-5 32.86
    转向 4.40×10-4 1.06×10-4 7×10-4 1.6×10-4 2.7×10-4 7×10-5 42.68
    下载: 导出CSV
  • [1] 郁舒昊, 周辉, 叶春杨, 等. SDFA: 基于多特征融合的船舶轨迹聚类方法研究[J]. 计算机科学, 2022, 49(增刊1): 256-260. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2022S1039.htm

    YU S H, ZHOU H, YE Y Q, et al. SDFA: study on ship trajectory clustering method based on multifeature fusion[J]. Computer Science, 2022, 49(S1): 256-260. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2022S1039.htm
    [2] SUO Y, CHEN W, CLARAMUNT C, et al. A ship trajectory prediction framework based on a recurrent neural network[J]. Sensors, 2020, 20(18): 5133. doi: 10.3390/s20185133
    [3] CHEN L, YANG P, LI S, et al. Online modeling and prediction of maritime autonomous surface ship maneuvering motion under ocean waves[J]. Ocean Engineering, 2023, 276: 114183. doi: 10.1016/j.oceaneng.2023.114183
    [4] VOLKOVA T A, BALYKINA Y E, BESPALOV A. Predicting ship trajectory based on neural networks using AIS data[J]. Journal of Marine Science and Engineering, 2021, 9(3): 254. doi: 10.3390/jmse9030254
    [5] ZHENG Y, LYU X, QIAN L, et al. An optimal BP neural net-work track prediction method based on a GA-ACO hybrid algorithm[J]. Journal of Marine Science and Engineering, 2022, 10(10): 1399. doi: 10.3390/jmse10101399
    [6] 甄荣, 金永兴, 胡勤友, 等. 基于AIS信息和BP神经网络的船舶航行行为预测[J]. 中国航海, 2017, 40(2): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201702002.htm

    ZHEN R, JIN Y X, HU Q Y, et al. Vessel behavior prediction based on AIS data and BP neural network[J]. Navigation of China, 2017, 40(2): 6-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201702002.htm
    [7] 胡玉可, 夏维, 胡笑旋, 等. 基于循环神经网络的船舶轨迹预测[J]. 系统工程与电子技术, 2020, 42(4): 871-877. https://cdmd.cnki.com.cn/Article/CDMD-10151-1024310879.htm

    HU Y K, XIA W, HU X X, et al. Vessel trajectory prediction based on recurrent neural network[J]. Systems Engineering and Electronics, 2020, 42(4): 871-877. (in Chinese) https://cdmd.cnki.com.cn/Article/CDMD-10151-1024310879.htm
    [8] 王知昊, 元海文, 李维娜, 等. 交汇水域船舶轨迹预测与航行意图识别[J]. 交通信息与安全, 2022, 40(4): 101-109. doi: 10.3963/j.jssn.1674-4861.2022.04.011

    WANG Z H, YUAN H W, L W, et al. Trajectory prediction and intention identification of ships in confluence waters[J]. Journal of Transport Information and Safety, 2022, 40(4): 101-109. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.04.011
    [9] ZHANG X, FU X, XIAO Z, et al. Vessel trajectory prediction in maritime transportation: Current approaches and beyond[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 19980-19998. doi: 10.1109/TITS.2022.3192574
    [10] 徐瑞龙, 祁云嵩, 石琳. 基于Transformer模型和Kalman滤波预测船舶航迹[J]. 计算机应用与软件, 2021, 38(5): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ202105019.htm

    XU R L, QI Y S, SHI L. Predicting ship tracks based on transformer model and Kalman filtering[J]. Computer Applications and Software, 2021, 38(5): 106-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ202105019.htm
    [11] JIANG D, SHI G, LI N, et al. TRFM-LS: transformer-based deep learning method for vessel trajectory prediction[J]. Journal of Marine Science and Engineering, 2023, 11(4): 880. doi: 10.3390/jmse11040880
    [12] 甘少君. 数据驱动的内河限制性单向航道船舶调度模型及方法研究[D]. 重庆: 重庆大学, 2017.

    GAN S J. Study on data-driven vessel scheduling model and method for restricted one-way inland waterway transportation[D]. Chongqing: Chongqing University, 2017. (in Chinese)
    [13] 张黎翔, 朱怡安, 陆伟, 等. 基于AIS数据的船舶轨迹修复方法研究[J]. 西北工业大学学报, 2021, 39(1): 119-125. https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD202101015.htm

    ZHANG L X, ZHU Y A, LU W, et al. Research on ship trajectory repair method based on AIS data[J]. Journal of Northwestern Polytechnical University, 2021, 39(1): 119-125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD202101015.htm
    [14] 潘侃, 尹春林, 王磊, 等. 基于特征工程的重要节点挖掘方法[J]. 电子科技大学学报, 2021, 50(6): 930-937. https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX202106020.htm

    PAN K, YIN C L, WANG L, et al. Identifying critical nodes based on feature engineering[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(6): 930-937. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX202106020.htm
    [15] 马杰, 何沐蓉, 贾承丰, 等. 基于上下文自编码的船舶行为语义表征[J]. 交通运输工程学报, 2022, 22(4): 334-347. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202204026.htm

    MA J, HE M R, JIA C F, et al. Semantic representation of ship behavior based on context autoencoder[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 334-347. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202204026.htm
    [16] 张牧行, 申晓红, 何磊, 等. 1种水下目标识别的最大信息系数特征选择方法[J]. 西北工业大学学报, 2020, 38(3): 471-477. https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD202003003.htm

    ZHANG M X, SHEN X H, HE L, et al. A maximum information coefficient feature selection method for underwater target recognition[J]. Journal of Northwestern Polytechnical University, 2020, 38(3): 471-477. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD202003003.htm
    [17] 权波, 杨博辰, 胡可奇, 等. 基于LSTM的船舶轨迹预测模型[J]. 计算机科学, 2018, 45(S2): 126-131. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202306006.htm

    QUAN B, YANG B C, HU K Q, et al. Prediction model of ship trajectory based on LSTM[J]. Computer Science, 2018, 45(S2): 126-131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202306006.htm
    [18] 吴建华, 彭虎, 王辰, 等. 基于AIS通信量的水上交通事故检测方法[J]. 交通信息与安全, 2023, 41(5): 83-94. doi: 10.3963/j.jssn.1674-4861.2023.05.009

    WU J H, PENG H, WANG C, et al. A detection method for maritime traffic accidents based on AIS communication volume[J]. Journal of Transport Information and Safety, 2023, 41(5): 83-94. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.05.009
    [19] LI S, JIN X, XUAN Y, et al. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting[C]. 33rd Conference on Neural Information Processing Systems, Vancouver, Canada: NeurIPS, 2019.
    [20] ZHOU H, ZHANG S, PENG J, et al. Informer: beyond efficient transformer for long sequence time-series forecasting[C]. The 35th AAAI Conference on Artificial Intelligence. Online: AAAI, 2021.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  461
  • HTML全文浏览量:  319
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-03
  • 网络出版日期:  2024-04-03

目录

    /

    返回文章
    返回