留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于车载视频抖动矢量的路面平整性评估方法

陈子昂 陈新 曾宇同 郭唐仪

陈子昂, 陈新, 曾宇同, 郭唐仪. 基于车载视频抖动矢量的路面平整性评估方法[J]. 交通信息与安全, 2024, 42(2): 105-114. doi: 10.3963/j.jssn.1674-4861.2024.02.011
引用本文: 陈子昂, 陈新, 曾宇同, 郭唐仪. 基于车载视频抖动矢量的路面平整性评估方法[J]. 交通信息与安全, 2024, 42(2): 105-114. doi: 10.3963/j.jssn.1674-4861.2024.02.011
CHEN Ziang, CHEN Xin, ZENG Yutong, GUO Tangyi. Assessing Pavement Rougness Using Jitter Vector from In-vehicle Camera Videos[J]. Journal of Transport Information and Safety, 2024, 42(2): 105-114. doi: 10.3963/j.jssn.1674-4861.2024.02.011
Citation: CHEN Ziang, CHEN Xin, ZENG Yutong, GUO Tangyi. Assessing Pavement Rougness Using Jitter Vector from In-vehicle Camera Videos[J]. Journal of Transport Information and Safety, 2024, 42(2): 105-114. doi: 10.3963/j.jssn.1674-4861.2024.02.011

基于车载视频抖动矢量的路面平整性评估方法

doi: 10.3963/j.jssn.1674-4861.2024.02.011
基金项目: 

国家重点研发计划-政府间国际科技创新合作项目 2019YFE0123800

南京市国际合作项目 202002013

详细信息
    作者简介:

    陈子昂(1999—),硕士研究生,研究方向:交通运输工程. E-mail:434241989@qq.com

    通讯作者:

    陈新(1970—),硕士,副教授. 研究方向:交通信息工程及控制. E-mail:6470959@qq.com

  • 中图分类号: U416.2

Assessing Pavement Rougness Using Jitter Vector from In-vehicle Camera Videos

  • 摘要: 针对路面平整性评估流程繁琐、效率低、周期长等问题,提出基于车载视频抖动矢量的路面平整性评估方法,实现常态化场景下对路面状态的初步快速筛选评估。使用车载采集设备获取的行车视频作为评估数据基础,对车载图像进行预处理,增强行车视频图像的对比度,降低行车环境变化对视频图像对比度的影响。利用分块灰度投影算法对视频图像进行相似性判定,去除大偏差的抖动矢量和运动目标干扰,提取行车视频的主要抖动矢量特征。采用粒子群优化算法改进投影相关性曲线的搜索模式,通过使用行(列)方向的灰度投影曲线相关性作为适应度函数来提高算法的搜索效率。建立基于遗传算法(genetic algorithm,GA)优化的K-means聚类分析算法,实现了自主采集路段中不同车速条件下的路面平整性分级评估。通过自主采集数据实验验证,基于粒子群优化的灰度投影算法在检测平整路面时,耗时0.148 s,算法效率比原算法提高了91.41%;在检测粗糙路面时,耗时0.123 s,算法效率比原算法法提高了87.58%,且检测出的抖动矢量数值一致。本文提出的基于车载视频抖动矢量的GA-K-means路面平整性分级评估方法能够有效降低初始聚类中心的干扰。

     

  • 图  1  改进灰度投影算法流程图

    Figure  1.  Flow chart of the program to improve the gray scale projection algorithm

    图  2  第1分块的灰度投影相关曲线

    Figure  2.  Grey scale projection correlation curves for the first part

    图  3  行车视频抖动检测结果

    Figure  3.  Driving video jitter test results

    图  4  车辆经过不同状况路面的抖动检测

    Figure  4.  Detection of vehicle shaking over different road conditions

    图  5  利用遗传算法优化K-means聚类的流程图

    Figure  5.  Optimization of K-means clustering process using genetic algorithm

    图  6  K-means聚类和改进K-means聚类收敛曲线对比图

    Figure  6.  Comparison of convergence curves of K-means clustering and improved K-means clustering

    图  7  不同车速区间行车抖动量均值聚类分析结果

    Figure  7.  Cluster analysis results of the mean value of travel jitter in different speed zone

    表  1  数据基础

    Table  1.   Data foundation

    数据采集日期 数据采集路段 车速(/km/h) 路面粗糙性能的当前状态
    2021.5.10   南京市中山门大街、紫金东路、双麒路等 30~50   路面坑洞、破损、凹陷凸起
    2021.8.29   学校一号路、二号路及附近市区道路路段 25~40   路面坑洞、破损、凹陷凸起、窨井盖及减速带
    2021.9.16   南京市友谊路,学校二号路及中山门大街 25~40   路面坑洞、破损、凹陷凸起、窨井盖及减速带
    2021.9.18   南京市中山门大街、紫金山路、光华路、金马路、双麒路等,高速公路省道和国道路段 40~50
    70~110
      路面坑洞、破损、凹陷凸起、窨井盖及减速带,高速公路路段的桥头跳车
    下载: 导出CSV

    表  2  不同算法的检测对比

    Table  2.   Comparison of detection with different algorithms

    路面类型 方法对比 全局搜索时间/s 抖动矢量 提升效率/%
    平整路面 改进算法 0.148 1 91.41
    传统算法 1.722 1
    粗糙路面 改进算法 0.123 -5 87.58
    传统算法 0.990 -5
    下载: 导出CSV

    表  3  路面平整性等级划分

    Table  3.   Grading of road surface levelness

    平整性等级 定性描述
    第1级 路面平整舒适
    第2级 路面较平整
    第3级 路面出现粗糙
    第4级 路面较粗糙
    第5级 路面严重粗糙
    下载: 导出CSV

    表  4  路面平整性的分级评估实例

    Table  4.   Example of grading assessment of road surface levelness

    数据采集路段 车速/(km/h) 粗糙性能当前状态 行车抖动量均值 粗糙性等级
    南京市中山门大街、紫金东路、双麒路等 40~50 路面坑洞、破损、凹陷凸起 0.677 第2级
    学校一号路、二号路及附近市区道路路段 30~40   路面坑洞、破损、凹陷凸起、窨井盖及减速带 2.321 第3级
      南京市中山门大街、紫金山路、光华路、金马路、双麒路等,高速公路省道和国道路段 40~50   路面坑洞、破损、凹陷凸起、窨井盖及减速带,高速公路路段的桥头跳车 1.886 第4级
    下载: 导出CSV
  • [1] 惠记庄, 张泽宇, 叶敏, 等. 公路建养装备数字孪生技术综述[J]. 交通运输工程学报, 2023, 23(4): 23-44.

    HUI J Z, ZHANG Z Y, YE M, et al. A review of digital twin technology for highway construction and maintenance equipment[J]. Journal of Transportation Engineering, 2023, 23(4): 23-44. (in Chinese)
    [2] 何洪文, 孙逢春, 李梦林. 我国综合交通工程科技现状及未来发展[J]. 中国工程科学, 2023, 25(6): 202-211.

    HE H W, SUN F C, LI M L. Current status and future development of comprehensive transportation engineering science and technology in China[J]. China Engineering Science, 2023, 25(6): 202-211. (in Chinese)
    [3] KALOOP M R, El-BADAWY S M, HU J W, et al. International roughness index prediction for flexible pavements using novel machine learning techniques[J]. Engineering Applications of Artificial Intelligence, 2023, 122: 106007. doi: 10.1016/j.engappai.2023.106007
    [4] LIU J, LIU F, ZHENG C, et al. Improving asphalt mix design considering international roughness index of asphalt pavement predicted using autoencoders and machine learning[J]. Construction and Building Materials, 2022, 360: 129439. doi: 10.1016/j.conbuildmat.2022.129439
    [5] LIU C, WU D, LI Y, et al. Large-scale pavement roughness measurements with vehicle crowdsourced data using semi-supervised learning[J]. Transportation Research Part C: Emerging Technologies, 2021, 125: 103048. doi: 10.1016/j.trc.2021.103048
    [6] AUGUSTAUSKAS R, LIPNICKAS A. Improved pixel-level pavement-defect segmentation using a deep autoencoder[J]. Sensors, 2020, 20(9): 2557. doi: 10.3390/s20092557
    [7] 张金喜, 王琳, 周同举, 等. 基于行车振动的路面平整性智能检测方法研究[J]. 中外公路, 2020, 40(1): 31-36.

    ZHANG J X, WANG L, ZHOU T J, et al. Study on Intelligent detection method of pavement roughness based on vibration of moving vehicles[J]. Journal of China & Foreign Highway, 2020, 40(1): 31-36. (in Chinese)
    [8] CERECEDA D, MEDEL-VERA C, ORTIZ M, et al. Roughness and condition prediction models for airfield pavements using digital image processing[J]. Automation in Construction, 2022, 139: 104325. doi: 10.1016/j.autcon.2022.104325
    [9] BASHAR M Z, TORRES-MACHI C. Deep learning for estimating pavement roughness using synthetic aperture radar data[J]. Automation in Construction, 2022, 142: 104504. doi: 10.1016/j.autcon.2022.104504
    [10] TIAN C, ZHENG M, ZUO W, et al. Multi-stage image denoising with the wavelet transform[J]. Pattern Recognition, 2023, 134: 109050. doi: 10.1016/j.patcog.2022.109050
    [11] 李之红, 申天宇, 文琰杰, 等. 基于混合机器学习框架的网约车订单需求预测与异常点识别[J]. 交通信息与安全, 2023, 41(3): 157-165, 174.

    LI Z H, SHEN T Y, WENG Y J, et al. Order demand prediction and anomaly-point identification for online car-hailing orders based on hybrid machine learning framework[J]. Journal of Transport Information and Safety, 2023, 41(3): 157-165, 174. (in Chinese)
    [12] KREMER T, IRONS T, M LLER-PETKE M, et al. Review of acquisition and signal processing methods for electromagnetic noise reduction and retrieval of surface nuclear magnet-ic resonance parameters[J]. Surveys in Geophysics, 2022, 43(4): 999-1053. doi: 10.1007/s10712-022-09695-3
    [13] GUO J, SI Z, XIANG J. A compound fault diagnosis method of rolling bearing based on wavelet scattering transform and improved soft threshold denoising algorithm[J]. Measurement, 2022, 196: 111276. doi: 10.1016/j.measurement.2022.111276
    [14] 张玺君, 袁占亭, 张红, 等. 交通轨迹大数据预处理方法研究[J]. 计算机工程, 2019, 45(6): 26-31.

    ZHANG X J, YUAN Z T, ZHANG H, et al. Research on preprocessing method for traffic trajectory big data[J]. Computer Engineering, 2019, 45(6): 26-31. (in Chinese)
    [15] GOLDBERG P W, KATZMAN M J. Lower bounds for the query complexity of equilibria in Lipschitz games[J]. Theoretical Computer Science, 2023, 962: 113931.
    [16] LI H, CAO Y, WAN Y, et al. An improved temporal phase unwrapping based on super-grayscale multi-frequency grating projection[J]. Optics and Lasers in Engineering, 2022, 153: 106990.
    [17] FENG Y, DANG Y, WANG J, et al. A novel grey projection incidence model for assessing the relationships between cardiovascular diseases and air pollutants[J]. ISA Transactions, 2023, 135: 398-409. .
    [18] 党媛媛, 陈兆学. 基于灰度积分投影与霍夫圆变换算法的人眼瞳距自动检测[J]. 计算机系统应用, 2022, 31(7): 259-264.

    DANG Y Y, CHEN Z X. Automatic detection of human eye pupil distance based on gray integral projection and hough circle transform algorithm[J]. Computer Systems Application, 2022, 31(7): 259-264. (in Chinese)
    [19] 胡建祥, 侯毅男. 基于多元灰度投影的无人艇电子稳像方法[J]. 弹箭与制导学报, 2021, 41(4): 65-68, 73.

    HU J X, HOU Y N. USV video stabilization algorithm based on multilayer gray projection[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2021, 41(4): 65-68, 73. (in Chinese)
    [20] 胡常俊, 张著洪. 基于视频抖动的灰度投影稳像算法[J]. 贵州大学学报(自然科学版), 2019, 36(1): 82-86.

    HU C J, ZHANG Z H. Video jitter-based image stabilization algorithm for grayscale projection[J]. Journal of Guizhou University(Natural Sciences), 2019, 36(1): 82-86. (in Chinese)
    [21] 高玮宁, 马善涛, 何勇军, 等. 图像灰度投影的聚焦窗口选择方法[J]. 哈尔滨理工大学学报, 2021, 26(5): 60-67.

    GAO W N, MA S T, HE Y J, et al. A focusing window selection based on gray-scale projection[J]. Journal of harbin university of science and technology, 2021, 26(5): 60-67. (in Chinese)
    [22] GUPTA G. Algorithm for image processing using improved median filter and comparison of mean, median and improved median filter[J]. International Journal of Soft Computing and Engineering(IJSCE), 2011, 1(5): 304-311.
    [23] 常振廷, 肖智豪, 张文军, 等. 基于网格分类与纵横向注意力的城市道路车道线检测方法[J]. 交通信息与安全, 2023, 41(3): 92-102, 110

    CHANG Z T, XIAO Z H, ZHANG W J, et al. Lane line detection method for urban roads based on grid classification and vertical and horizontal attention[J]. Journal of Transport Information and Safety, 2023, 41(3): 92-102, 110. (in Chinese)
    [24] LI H, WANG J. Collaborative annealing power k-means ++ clustering[J]. Knowledge-Based Systems, 2022, 255: 109593.
    [25] KORDOS M, BLACHNIK M, SCHERER R. Fuzzy clustering decomposition of genetic algorithm-based instance selection for regression problems[J]. Information Sciences, 2022, 587: 23-40.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  83
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-08
  • 网络出版日期:  2024-09-14

目录

    /

    返回文章
    返回