留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于固定/PTZ摄像机系统的开阔水域小目标船舶主动式跟踪方法

游继安 胡钊政 肖汉彪 孟杰

游继安, 胡钊政, 肖汉彪, 孟杰. 基于固定/PTZ摄像机系统的开阔水域小目标船舶主动式跟踪方法[J]. 交通信息与安全, 2024, 42(3): 53-61. doi: 10.3963/j.jssn.1674-4861.2024.03.006
引用本文: 游继安, 胡钊政, 肖汉彪, 孟杰. 基于固定/PTZ摄像机系统的开阔水域小目标船舶主动式跟踪方法[J]. 交通信息与安全, 2024, 42(3): 53-61. doi: 10.3963/j.jssn.1674-4861.2024.03.006
YOU Ji'an, HU Zhaozheng, XIAO Hanbiao, MENG Jie. An Active Tracking Method for Small Ships in Open Water Based on Fixed/PTZ Camera System[J]. Journal of Transport Information and Safety, 2024, 42(3): 53-61. doi: 10.3963/j.jssn.1674-4861.2024.03.006
Citation: YOU Ji'an, HU Zhaozheng, XIAO Hanbiao, MENG Jie. An Active Tracking Method for Small Ships in Open Water Based on Fixed/PTZ Camera System[J]. Journal of Transport Information and Safety, 2024, 42(3): 53-61. doi: 10.3963/j.jssn.1674-4861.2024.03.006

基于固定/PTZ摄像机系统的开阔水域小目标船舶主动式跟踪方法

doi: 10.3963/j.jssn.1674-4861.2024.03.006
基金项目: 

国家自然科学基金项目 52302503

湖北省重点研发计划项目 2022BAA064

湖北省教育厅科学研究计划指导性项目 B2022510

详细信息
    作者简介:

    游继安(1986—),博士研究生. 研究方向:智能交通系统. E-mail: 256741@whut.edu.cn

    通讯作者:

    胡钊政(1979—),博士,教授. 研究方向:计算机视觉、主动视觉监控等. E-mail: zzhu@whut.edu.cn

  • 中图分类号: TP311

An Active Tracking Method for Small Ships in Open Water Based on Fixed/PTZ Camera System

  • 摘要: 仅依靠当前的闭路电视(closed-circuit television,CCTV)系统,往往难以主动跟踪并拍摄内河船舶清晰的图像。针对上述问题,研究了基于固定/平移-倾斜-对焦(pan-tilt-zoom,PTZ)摄像机系统的开阔水域小目标船舶主动式跟踪方法。采用基于虚拟四边形的三层联合标定模型对固定摄像机和PTZ摄像机进行联合标定,将虚拟四边形内的图像坐标与PTZ摄像机的平移角和倾斜角一一对应;引入虚拟四边形的概念,有效过滤虚拟四边形外目标的干扰,提高小目标船舶的检测准确率;利用透视n点(perspective-n-point, PnP)问题算法和虚拟四边形顶点的图像坐标,得到图像坐标与世界坐标间的映射关系,再利用Pan-Tilt-Height(PTH)模型将虚拟四边形中目标的世界坐标转化为PTH坐标;在小目标跟踪过程中,通过连续检测虚拟四边形中船舶边框质心的图像坐标,即可计算得到PTZ摄像机的平移角与倾斜角,从而实现实时主动跟踪的目的,并尽最大限度的保持船舶目标处于PTZ摄像机图像的中心位置。选取湖北省孝感市春晖湖和武汉市汉江中法桥段这2处真实场景,进行可靠性和有效性验证,实验结果表明:①利用改进的目标检测方法对固定摄像机图像中的船舶进行检测,F1-Score分别为96.82%和97.62%;②利用研究的主动式跟踪方法跟踪运动船舶时,PTZ摄像机的跟踪失败率为4.63%。本文研究的主动式跟踪方法的跟踪速率可以达到18.55 fps。

     

  • 图  1  本文算法结构框架图

    Figure  1.  Algorithm structure frame work diagram

    图  2  联合感知示意图

    Figure  2.  The sketch map of the joint perception method

    图  3  基于虚拟四边形的三层联合标定模型

    Figure  3.  Fixed / PTZ cameras-based 3-layer joint calibration model

    图  4  PTH坐标系

    Figure  4.  PTH coordinate system

    图  5  实验设备

    Figure  5.  Experimental Equipment

    图  6  实验场景

    Figure  6.  Experimental Scenarios

    图  7  固定视角图像中目标的检测结果

    Figure  7.  Detection results of the objects in the fixed image

    图  8  不同场景下的跟踪结果

    Figure  8.  The tracking results in different scenes

    图  9  目标边框与PTZ图像间的位置关系

    Figure  9.  The relationship between the bounding box of the ship and the PTZ image

    图  10  主动式跟踪速率

    Figure  10.  Active tracking rate

    图  11  不同方法的目标检测结果

    Figure  11.  Object detection results of different methods

    图  12  本文方法中跟踪角度的偏离误差

    Figure  12.  The deviation error of the tracking angle in the proposed method

    图  13  PTZ摄像机的观测轨迹

    Figure  13.  Observation trajectory of PTZ camera

    表  1  在自建船舶数据集上的检测结果对比

    Table  1.   Detection results on the self-built ship dataset

    实验场景 方法 精确率/% 召回率/% 准确率/% F1-Score/%
    场景1 改进前 96.92 95.10 95.04 96.01
    改进后 97.23 96.41 96.25 96.82
    场景2 改进前 97.84 96.30 98.24 97.06
    改进后 98.02 97.23 99.2 97.62
    下载: 导出CSV

    表  2  不同主动式跟踪方法的跟踪效果对比

    Table  2.   Comparison of the effects of different active tracking methods

    方法 ITV/% OTE/% OOV/% 跟踪速率/fps
    文献[5] 77.63 4.77 17.60 45.45
    文献[16] 70.35 9.15 20.50 1.01
    本文方法 92.12 3.25 4.63 18.55
    下载: 导出CSV

    表  3  不同主动式跟踪方法的性能对比

    Table  3.   Comparison of performance of different active tracking methods

    方法 检测准确率/% OOV/% 跟踪速率/fps 丢失重找
    文献[5] 82.40 17.60 45.45
    文献[16] 96.64 20.50 1.01
    本文方法 97.72 4.63 18.55
    下载: 导出CSV
  • [1] WANG L, LIU Q, DONG S, et al. Effectiveness assessment of ship navigation safety countermeasures using fuzzy cognitive maps[J]. Safety Science, 2019, 117: 352-364. doi: 10.1016/j.ssci.2019.04.027
    [2] 赵婷, 王申涛, 牛林, 等. 合成孔径雷达图像舰船尾迹检测算法[J]. 上海交通大学学报, 2020, 54(12): 1259-1268.

    ZHAO T, WANG S T, NIU L, et al. Detection algorithm of ship wake in SAR Images[J], Journal of Shanghai Jiao Tong University, 2020, 54(12): 1259-1268.
    [3] QU J, LIU R W, GUO Y, et al. Improving maritime traffic surveillance in inland waterways using the robust fusion of AIS and visual data[J]. Ocean Engineering, 2023, 275: 114198. doi: 10.1016/j.oceaneng.2023.114198
    [4] SANG L Z, WALL A, MAO Z, et al. A novel method for restoring the trajectory of the inland waterway ship by using AIS data[J]. Ocean Engineering. 2015, 110: 183-194. doi: 10.1016/j.oceaneng.2015.10.021
    [5] HU Z Z, YOU J A, YUAN K, et al. Grid-based control of active cameras for waterway ship surveillance[C]. The 5th Inter-national Conference on Transportation Information and Safety(ICTIS). Liverpool, U. K. : IEEE, 2019.
    [6] GUO Y, LIU R W, QU J, et al. Asynchronous trajectory matching-based multimodal maritime data fusion for vessel traffic surveillance in inland waterways[J]. IEEE Transactions on Intelligent Transportation Systems, 2023. 24 (11): 12779-12792. doi: 10.1109/TITS.2023.3285415
    [7] CHEN Z, CHEN D, ZHANG Y, et al. Deep learning for auton-omous shiporiented small ship detection[J]. Safety Science, 2020, 130: 104812. doi: 10.1016/j.ssci.2020.104812
    [8] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]. Uropean Conference on Computer Vision(ECCV), Zurich, Switzerland: IEEE, 2014.
    [9] 王鹏, 神和龙, 尹勇, 等. 基于深度学习的船舶驾驶员疲劳检测算法[J]. 交通信息与安全, 2022, 40(1): 63-71. doi: 10.3963/j.jssn.1674-4861.2022.01.008

    WANG P, SHEN H L, YIN Y, et al. A detection algorithm for the fatigue of ship officers based on deep learning technique[J]. Journal of Transport Information and Safety, 2022, 40(1): 63-71. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.01.008
    [10] YONG H, HUANG J, XIANG W, et al. Panoramic background image generation for PTZ cameras[J]. IEEE Transactions on Image Processing, 2019, 28(7): 3162-3176. doi: 10.1109/TIP.2019.2894940
    [11] 梁文锋, 项志宇. 鲁棒的PTZ摄像机目标跟踪算法[J]. 浙江大学学报(工学版), 2011, 45(1): 59-63.

    LIANG W F, XIANG Z Y, et, al. Algorithm of robust object tracking using PTZ camera[J]. Journal of Zhejiang university (Engineering Science), 2011, 45(1): 59-63. (in Chinese)
    [12] XUE K, LIU Y, OGUNMAKIN G, et al. Panoramic gaussian mixture model and large-scale range background substrac-tion method for PTZ camera-based surveillance systems[J]. Machine Vision and Applications. 2013, 24: 477-492. doi: 10.1007/s00138-012-0426-4
    [13] LIU N, WU H F, LIN L. Hierarchical ensemble of background models for PTZ-based video surveillance[J]. IEEE Transactions on Cybernetics. 2014, 45: 89-102.
    [14] LISANTI G, MASI I, PERNICI F, et al. Continuous localization and mapping of a pan-tilt-zoom camera for wide area tracking[J]. Machine Vision and Applications. 2016, 27: 1071-1085. doi: 10.1007/s00138-016-0799-x
    [15] 万定锐, 周杰. 双PTZ摄像机系统的标定[J]. 中国图象图形学报, 2008(4): 786-793.

    WAN D R, ZHOU J. Calibration of dual-PTZ-camera system[J]. Journal of Image and Graphics, 2008(4): 786-793. (in Chinese)
    [16] SERGIO B, LEOPOLDO L R, DANIEL S C, et al. Maritime surveillance by multiple data fusion: an application based on deep learning object detection, AIS data and geofencing[C]. The 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. Lisbon, Portugal: Springer 2023.
    [17] SHAKERI M, ZHANG H. Cooperative targeting: detection and tracking of small objects with a dual camera system[C]. Field and Service Robotics: Results of the 9th International Conference. Toronto, Canada: FSR, 2015.
    [18] BARIS I, BASTANLAR Y L. Classification and tracking of traffic scene objects with hybrid camera systems[C]. International Conference on Intelligent Transportation Systems (ITSC). Yokohama, Japan: IEEE, 2017.
    [19] 石皓, 赖世铭, 刘煜, 等. 一种用于鱼眼PTZ主从监控系统的标定方法[J]. 系统仿真学报, 2013, 25(10): 2412-2417.

    SHI H, LAI S M, LIU Y, et al. Calibration method based on master-slave surveillance system composed fish-eye camera and PTZ dome camera[J]. Journal of System Simulation. 2013, 25(10): 2412-2417. (in Chinese)
    [20] FU J, DING Y, HUANG T, et al. Hand-eye calibration method based on three-dimensional visual measurement in robotic high-precision machining[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119: 3845-3856.
    [21] JOCHER G. YOLOv5[CP/OL]. (2022-02-09)[2023-6-25]. https://github.com/ultralytics/yolov5.
    [22] WANG J, JIA Z, LAI H, et al. A real time target face tracking algorithm based on saliency detection and camshift[J]. Multimedia Tools and Applications, 2023, 82(28): 43599-43624.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  131
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-10
  • 网络出版日期:  2024-10-21

目录

    /

    返回文章
    返回