留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城市轨道交通运营突发事件风险动态演化模型

范博松 邵春福 赵丹 马社强

范博松, 邵春福, 赵丹, 马社强. 城市轨道交通运营突发事件风险动态演化模型[J]. 交通信息与安全, 2024, 42(3): 122-130. doi: 10.3963/j.jssn.1674-4861.2024.03.013
引用本文: 范博松, 邵春福, 赵丹, 马社强. 城市轨道交通运营突发事件风险动态演化模型[J]. 交通信息与安全, 2024, 42(3): 122-130. doi: 10.3963/j.jssn.1674-4861.2024.03.013
FAN Bosong, SHAO Chunfu, ZHAO Dan, MA Sheqiang. Modelling on the Risk Dynamic Evolution of Urban Rail Transit Operation Emergency[J]. Journal of Transport Information and Safety, 2024, 42(3): 122-130. doi: 10.3963/j.jssn.1674-4861.2024.03.013
Citation: FAN Bosong, SHAO Chunfu, ZHAO Dan, MA Sheqiang. Modelling on the Risk Dynamic Evolution of Urban Rail Transit Operation Emergency[J]. Journal of Transport Information and Safety, 2024, 42(3): 122-130. doi: 10.3963/j.jssn.1674-4861.2024.03.013

城市轨道交通运营突发事件风险动态演化模型

doi: 10.3963/j.jssn.1674-4861.2024.03.013
基金项目: 

国家自然科学基金项目 52072025

中央高校基本科研业务费项目 2024JKF02ZK12

详细信息
    通讯作者:

    范博松(1996—),博士,讲师. 研究方向:交通安全. E-mail: fanbosong@ppsuc.edu.cn

  • 中图分类号: U268.6

Modelling on the Risk Dynamic Evolution of Urban Rail Transit Operation Emergency

  • 摘要: 为了分析城市轨道交通运营突发事件的动态演化特征,探究影响城市轨道交通正常运营的风险致因,研究了城市轨道交通运营突发事件风险动态演化模型。采用bow-tie模型将运营突发事件的风险致因、预估时间裕度和事件严重程度有机组合,构建了风险动态模态,能够反映不同时刻城市轨道交通系统运营的风险状态。基于复杂网络模型,引入连边权重和结构洞理论改进节点的度分布,提出风险动态演化模型,表征风险动态模态及其演化过程。依托北京市轨道交通运营突发事件数据,探究运营突发事件的演化规律和重要风险致因。结果表明:北京市城市轨道交通运营突发事件网络的风险动态演化模型属于无标度网络,19.90%的风险动态模态承担了整个系统77.76%的动态演化过程;风险动态演化模型具有鲁棒且脆弱性,“较严重”“严重”模态对应的风险致因分别为“列车兑现率”“正点率”,这些风险致因给系统的动态演化造成了严重后果。因此,需要重点关注可能带来严重后果的风险致因,并根据系统的动态演化特征开展精准化的风险防控与韧性提升工作。

     

  • 图  1  风险模态信息的组合

    Figure  1.  Combination of risk mode information

    图  2  风险动态模态到复杂网络的映射

    Figure  2.  Mapping risk dynamic modes to complex network

    图  3  模态演化概率散点图

    Figure  3.  Mode evolution probability scatter plot

    图  4  模态演化概率拟合结果

    Figure  4.  Mode evolution probability fitting results

    图  5  模态演化概率幂律分布线性拟合图

    Figure  5.  Linear fitting plot of power law distribution of mode evolution probability

    图  6  模态演化概率与结构洞等级比率关系图

    Figure  6.  Relationship between mode evolution probability and structural hole rank ratio

    图  7  模态演化概率与结构洞等级比率拟合结果

    Figure  7.  Mode evolution probability and structural hole rank ratio fitting results

    图  8  模态演化概率与结构洞等级比率分布线性拟合图

    Figure  8.  Linear fitting plot of mode evolution probability and structural hole rank ratio

    表  1  27个风险致因描述

    Table  1.   27 risk causes and their descriptions

    类别 变量 名称 变量描述
    列车计划 x1   实际开行列数/列   每日轨道交通实际开行列车数
    完成情况 x2   列车兑现率/%   每日路网实际与计划开行列车比值
    列车晚点情况 x3   正点率/%   每日路网实际开行列车正点到达比率
    x4   2 min晚点列车数/列   每日路网晚点超过2 min的列车数
    环境因素 x5   工作日   工作日、非工作日取值:0, 1
    x6   天气   恶劣天气、非恶劣天气取值:0, 1
    x7   线路   该线路是否发生突发事件取值:0, 1
    路网客流情况 x8   日路网客运量/(万人·次)   每日轨道交通路网客运量
    x9   1号线断面满载率/%   每日高峰时段各条线路断面满载率平均值
    x10 ~ x26   
    x27   机场线断面满载率/%
    下载: 导出CSV

    表  2  突发事件严重程度等级取值表

    Table  2.   Severity levels of emergencies

    严重程度等级 严重程度取值
    特别严重(Extremely High,EH) 10
    严重(High,H) 5
    较严重(Medium,M) 2
    不严重(Low,L) 1
    下载: 导出CSV

    表  3  某日路网及各线路人员伤亡、列车调整及列车延误情况

    Table  3.   Casualties, train adjustments and delays to the network and lines on a given day

    运营企业及线路 人员伤亡 列车调整 列车延误
    人数/人 停运/列 通过/列 清人/列 掉线/列 中折/列 5 min及以上延误事件/次
    北京地铁 1号线
    2号线 1
    5号线 1 2 1
    6号线 7 1 6 6
    7号线
    8号线
    9号线
    10号线 2 2 1
    13号线
    15号线
    昌平线
    房山线
    亦庄线
    八通线
    机场线
    S1线
    小计 1 8 1 8 4 6 2
    京港地铁 4-大兴线
    14号线(西段)
    14号线(东段)
    16号线(北段)
    小计 0 0 0 0 0 0 0
    路网 1 8 1 8 4 6 2
    下载: 导出CSV

    表  4  重要风险动态模态统计分析(前80个)

    Table  4.   Statistical analysis of important RDM (Top 80)

    风险动态模态 节点强度 演化概率/% 风险动态模态 节点强度 演化概率/%
    M={x8, L2, C1} 83 11.46 M={x6, L1, C1} 3 0.41
    M={x3, L3, C1} 51 7.04 M={x13, L2, C1} 3 0.41
    M={x10, L4, C1} 36 4.97 M={x16, L3, C1} 3 0.41
    M={x12, L4, C1} 34 4.70 M={x2, L2, C2} 3 0.41
    M={x28, L1, C1} 33 4.56 M={x12, L1, C1} 3 0.41
    M={x13, L5, C1} 29 4.01 M={x11, L1, C1} 3 0.41
    M={x14, L5, C1} 25 3.45 M={x4, L2, C1} 3 0.41
    M={x2, L3, C1} 24 3.31 M={x6, L2, C1} 3 0.41
    M={x11, L2, C1} 24 3.31 M={x10, L4, C1} 3 0.41
    M={x17, L4, C1} 13 1.80 M={x10, L2, C2} 3 0.41
    M={x20, L1, C1} 13 1.80 M={x26, L4, C1} 3 0.41
    M={x20, L3, C1} 13 1.80 M={x21, L4, C1} 3 0.41
    M={x5, L2, C1} 12 1.66 M={x5, L4, C1} 2 0.28
    M={x6, L1, C1} 11 1.52 M={x12, L5, C1} 2 0.28
    M={x1, L1, C1} 11 1.52 M={x6, L3, C1} 2 0.28
    M={x5, L3, C1} 10 1.38 M={x15, L3, C1} 2 0.28
    M={x10, L5, C1} 9 1.24 M={x18, L3, C1} 2 0.28
    M={x16, L4, C1} 9 1.24 M={x5, L5, C2} 2 0.28
    M={x10, L3, C1} 9 1.24 M={x10, L1, C1} 2 0.28
    M={x10, L2, C1} 8 1.10 M={x24, L5, C1} 2 0.28
    M={x4, L5, C1} 8 1.10 M={x6, L4, C1} 2 0.28
    M={x9, L1, C1} 7 0.97 M={x7, L1, C2} 2 0.28
    M={x7, L5, C1} 7 0.97 M={x20, L4, C1} 2 0.28
    M={x2, L1, C1} 7 0.97 M={x13, L5, C2} 2 0.28
    M={x4, L3, C1} 6 0.83 M={x18, L5, C1} 2 0.28
    M={x1, L2, C1} 6 0.83 M={x9, L3, C1} 2 0.28
    M={x12, L3, C2} 6 0.83 M={x18, L1, C1} 2 0.28
    M={x5, L1, C1} 6 0.83 M={x1, L1, C2} 2 0.28
    M={x5, L5, C1} 6 0.83 M={x14, L2, C1} 2 0.28
    M={x20, L2, C1} 6 0.83 M={x21, L1, C1} 2 0.28
    M={x1, L5, C1} 6 0.83 M={x19, L1, C2} 2 0.28
    M={x3, L2, C2} 5 0.69 M={x6, L4, C1} 2 0.28
    M={x7, L3, C1} 5 0.69 M={x16, L1, C1} 2 0.28
    M={x7, L4, C1} 4 0.55 M={x10, L4, C2} 2 0.28
    M={x20, L5, C1} 4 0.55 M={x23, L5, C2} 1 0.14
    M={x17, L2, C2} 4 0.55 M={x2, L5, C1} 1 0.14
    M={x5, L4, C1} 4 0.55 M={x22, L5, C2} 1 0.14
    M={x3, L2, C1} 3 0.41 M={x26, L2, C1} 1 0.14
    M={x3, L2, C3} 3 0.41 M={x22, L3, C1} 1 0.14
    M={x8, L3, C1} 3 0.41 M={x16, L3, C1} 1 0.14
    合计:节点强度和563(前40个),演化概率和77.76% 节点强度和649(前80个),演化概率和89.64%
    下载: 导出CSV

    表  5  高结构洞等级比率风险模态对应的演化路径

    Table  5.   Evolution path corresponding to high structural hole ratio risk mode

    路径 路径信息
    路径片段9~18 {x24, L3, C1}→{x24, L3, C1}→
    {x7, L4, C1}→{x13, L3, C1}→
    {x13, L3, C1}→{x14, L1, C1}→
    {x5, L1, C1}→{x5, L4, C2}→
    {x7, L5, C1}→{x7, L2, C1}
    路径片段97~107 {x8, L4, C1}→{x10, L2, C2}→
    {x24, L2, C1}→{x15, L5, C1}→
    {x15, L5, C1}→{x12, L3, C1}→
    {x17, L4, C1}→{x16, L3, C1}→
    {x14, L2, C1}→{x21, L2, C2}
    下载: 导出CSV
  • [1] SHEN S L, ELBAZ K, SHABAN W M, et al. Real-time prediction of shield moving trajectory during tunnelling[J]. Acta Geotechnica, 2022, 17(4): 1533-1549. doi: 10.1007/s11440-022-01461-4
    [2] YAN H, GAO C, ELZARKA H, et al. Risk assessment for construction of urban rail transit projects[J]. Safety Science, 2019, 118: 583-594. doi: 10.1016/j.ssci.2019.05.042
    [3] SINGH R, DANIEL H, DANIEL J. Decomposing journey times on urban metro systems via semiparametric mixed methods[J]. Transportation Research Part C: Emerging Technologies, 2020, 114(5): 140-163.
    [4] 程静, 卢群, 吴同政, 等. 地铁网络级联失效恢复策略韧性评估方法[J]. 交通信息与安全, 2023, 41(4): 173-184. doi: 10.3963/j.jssn.1674-4861.2023.04.018

    CHENG J, LU Q, WU T Z, et al. A method for evaluating recovery strategies for cascade failures of metro networks[J]. Journal of Transport Information and Safety, 2023, 41(4): 173-184. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.04.018
    [5] 刘朝阳, 吕永波, 刘步实, 等. 城市轨道交通运输网络级联失效抗毁性研究[J]. 交通运输系统工程与信息, 2018, 18(5): 82-87.

    LIU Z Y, LYU Y B, LIU B S, et al. Cascading failure resistance of urban rail transit network[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(5): 82-87. (in Chinese)
    [6] 胡立伟, 范仔健, 张苏航, 等. 基于复杂网络的城市交通拥塞因子风险传播机理及其应用研究[J]. 交通运输系统工程与信息, 2021, 21(2): 224-230.

    HU L W, FAN Z J, ZHANG S H, et al. Risk propagation mechanism and application of urban traffic congestion factors based on complex networks[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(2): 224-230. (in Chinese)
    [7] 赵振宁. 地铁列车牵引系统动态风险分析评估方法研究[D]. 青岛: 山东科技大学, 2019.

    ZHAO Z N. Research on dynamic risk analysis and evaluation method of metro train traction system[D]. Qingdao: Shandong University of Science and Technology, 2019. (in Chinese)
    [8] ZHOU Y, LI C, DING L, et al. Combining association rules mining with complex networks to monitor coupled risks[J]. Reliability Engineering and System Safety, 2019, 186(6), 194-208.
    [9] LI X, SUN C. Dynamic risk-warning of center diaphragm and bench composite method during construction[J]. Structural Durability and Health Monitoring, 2022, 16(3): 235-254. doi: 10.32604/sdhm.2022.013141
    [10] OMIDVAR M, ZAREI E, RAMAVANDI B, et al. Fuzzy bow-tie analysis: concepts, review, and application[J]. Linguistic Methods Under Fuzzy Information in System Safety and Reliability Analysis, 2022, 414(3): 13-51.
    [11] HUGHES P, SHIPP D, FIGUERES E M, et al. From free-text to structured safety management: introduction of a semi-automated classification method of railway hazard reports to elements on a bow-tie diagram[J]. Safety Science, 2018, 110: 11-19. doi: 10.1016/j.ssci.2018.03.011
    [12] LI K P, WANG S S. A network accident causation model for monitoring railway safety[J]. Safety Science, 2018, 109: 398-402. doi: 10.1016/j.ssci.2018.06.008
    [13] LI Q, SONG L, LIST G F, et al. A new approach to understand metro operation safety by exploring metro operation hazard network(MOHN)[J]. Safety Science, 2017, 93: 50-61. doi: 10.1016/j.ssci.2016.10.010
    [14] LU Y, LI Q, LU Y. A research on subway physical vulnerability based on network theory and FMECA[J]. Safety Science, 2015, 80: 127-134. doi: 10.1016/j.ssci.2015.07.019
    [15] YANG Y, LIU Y, ZHOU M, et al. Robustness assessment of urban rail transit based on complex network theory: a case study of the Beijing Subway[J]. Safety Science, 2015, 79: 149-162. doi: 10.1016/j.ssci.2015.06.006
    [16] 李萌. 基于贝叶斯与复杂网络的铁路隧道复杂系统运营期风险评估方法研究[D]. 石家庄: 石家庄铁道大学, 2020.

    LI M. Study on the risk assessment method of railway tunnel complex system based on bayes and complex network[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2020. (in Chinese)
    [17] 杨起帆. 基于复杂网络理论的地铁灾害链链式传递模型与风险分析[D]. 石家庄: 石家庄铁道大学, 2021.

    YANG Q F. Chain transfer model and risk analysis of metro disaster chain based on complex network theory[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2021. (in Chinese)
    [18] YU K, WANG Y, ZHAO W. Safety evaluation system of urban traffic network based on topological genetic algorithm[J]. Journal of Intelligent and Fuzzy Systems, 2020, 38(6), 6825-6832. doi: 10.3233/JIFS-179760
    [19] 中华人民共和国交通运输部. 城市轨道交通运营安全风险分级管控和隐患排查治理管理办法[R]. 北京: 中华人民共和国交通运输部, 2019.

    Ministry of Transport of the People's Republic of China. Urban rail transit operation safety risk hierarchical management and control and hidden danger investigation and management measures[R]. Beijing: Ministry of Transport of the People's Republic of China, 2019. (in Chinese)
    [20] BURT R S. Structural Holes[M]. Cambridge: Harvard University Press, 1992.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  62
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-28
  • 网络出版日期:  2024-10-21

目录

    /

    返回文章
    返回