An Evaluation Method for Safety Resilience of High Slope Construction Based on Bootstrap-matter-element Extension Model
-
摘要: 为了解决传统高边坡施工安全评价中指标体系片面、取值范围模糊、实用性不强等问题,提出基于Bootstrap-物元可拓模型的高边坡施工安全韧性评价方法。结合安全韧性概念,利用关联强度方法和关键词聚类分析,初步筛选高边坡施工安全要素。通过抽样适合性检验(Kaiser-Meyer-Olkin,KMO)和多重共线性检验分别处理指标关联度和共线性问题。形成以稳定度、冗余度、效率度、适应度为一级指标,以作业人员经验等20项要素为二级指标的高边坡施工安全韧性评价指标体系,从而进一步建立高边坡施工安全韧性的关联度函数并计算各评价等级下的指标关联度;最后运用熵权法确定各安全韧性指标的权重,形成高边坡施工安全韧性评价模型。依托某高速公路的高边坡施工建设项目验证模型的可行性,并与传统的施工安全风险评估结果进行比较研究结果表明:采用本文方法的高边坡安全韧性等级为Ⅲ级,与作业条件危险性分析评价法(likelihood-exposure-consequence,LEC)法和专家调查法的风险评价结果一致。与LEC法相比,Bootstrap-物元可拓模型在准确率上提高了9.68%,在召回率上提高了5.51%,在泛化性上提高了12.09%。高边坡施工安全韧性指标体系在边坡结构等基本影响因素外纳入施工安全因素,具有更高实用性。Abstract: In order to solve the problems of one-sided index system, fuzzy value range, and weak practicability in traditional high slope construction safety evaluation, a method of safety resilience evaluation of high slope construction based on Bootstrap-matter element extension model is proposed. Combined with the concept of safety resilience, the correlation strength method and keyword cluster analysis are used to screen the safety factors of high slope construction. Kaiser-Meyer-Olkin (KMO) test and multicollinearity test are used to deal with index correlation degree and collinearity respectively. The evaluation index system of construction safety resilience of high slope is formed, which takes stability, redundancy, efficiency and fitness as the first index and operator experience and other 20 factors as the second index. The comprehensive matter-element matrix is determined according to matter-element extension principle, and the classical domain is determined by Bootstrap method to deal with the unknown sample distribution hypothesis. Furthermore, the correlation degree function is established and the index correlation degree under each evaluation grade is calculated. The weight of each safety resilience index is determined by entropy weight method, and the construction safety resilience evaluation model of high slope is formed. Based on a highway high slope construction project, the feasibility of the model is verified, and compared with the traditional construction safety risk assessment results, the results show that the safety resilience grade of the high slope is Ⅲ, which is consistent with the risk assessment results of LEC method and expert investigation method. Moreover, the Bootstrap-matter-element extension model provides the overall safety resilience level and traceability analysis results. Compared with the likelihood-exposure-consequence (LEC) method, the mature-element extension model improves the accuracy by 9.68%, the recall rate by 5.51% and the generalization by 12.09%. The construction safety resilience index system of high slope includes construction safety factors in addition to the basic influencing factors such as slope structure, so it has higher practicability.
-
表 1 高边坡施工安全韧性评价指标体系
Table 1. Evaluation index system for safety resilience of high slope construction
一级指标 二级指标 安全韧性评价等级 依据 Ⅰ级 Ⅱ级 Ⅲ级 Ⅳ级 作业人员经验/年 > 0~1 > 1~3 > 3~6 > 6 ①③④ 安全员巡查频次(/次/d) > 7 > 5~7 > 3~5 3 ①② 稳定度 持续供电率/% > 0~25 > 25~50 > 50~75 > 75~100 ①④ 岩石抗压强度/MPa 5 > 5~15 > 15~30 > 30~60 ②③ 边坡高度/m > 60 > 40~60 > 30~40 30 ② 安全预算实际投入/% > 0~1 > 1~1.5 > 1.5~2 > 2~3 ④⑥ 人员调度效率/min > 60 > 45~60 > 30~45 30 ①⑤ 管理制度满意度 > 0~25 > 25~50 > 50~75 > 75~100 ④ 冗余度 防护设备储备率/% > 0~20 > 20~40 > 40~60 > 60~100 ②③ 施工信息备份情况 > 0~25 > 25~50 > 50~75 > 75~100 ⑤⑥ 施工材料储备天数/天 > 0~5 > 5~10 > 10~15 > 15 ① 应急演练培训频率(/次/月) > 0~3 > 3~6 > 6~9 > 9 ③⑥⑤ 设备故障率/% > 30 > 15~30 > 5~15 5 ② 效率度 施工设备的抢修效率(/h/台) > 5 > 3~5 > 1~3 1 ①⑥ 应急预案完备度 > 0~25 > 25~50 > 50~75 > 75~100 ②⑤ 应急疏散通道距离/m > 30 > 20~30 > 10~20 10 ③⑤ 超前地质预报准确率/% > 0~20 > 20~40 > 40~60 > 60~100 ④⑥ 适应度 智能设备配备百分比/% > 0~20 > 20~40 > 40~60 > 60~100 ②③④ 施工信息的智能化处理水平 > 0~25 > 25~50 > 50~75 > 75~100 ④⑤⑥ 传感器覆盖均匀性/% > 0~20 > 20~40 > 40~60 > 60~100 ④⑤ 注:①《宁波市公路工程施工安全风险防控手册》;②《宁波市公路工程施工风险源辨识手册》;③《宁波市公路路堑高边坡工程施工安全风险评估指南》;④《高速公路路堑边坡施工技术规程》;⑤〈高速公路路堑高边坡工程施工安全风险评估指南》;⑥《公路路基施工技术规范》。 表 2 评价指标经典域取值范围
Table 2. The value range of the classic domain of the evaluation index
一级指标 二级指标 标准值 经典域取值范围 Ⅰ级 Ⅱ级 Ⅲ级 Ⅳ级 稳
定
度作业人员经验 0.753 [0,0.111) [0.111,0.384) [0.384,0.793) [0.793,1] 安全员巡查频次 0.855 [0,0.326) [0.326,0.684) [0.684,0.841) [0.841,1] 持续供电率 0.646 [0,0.399) [0.399,0.503) [0.503,0.715) [0.715,1] 岩石抗压强度 0.953 [0,0.109) [0.109,0.474) [0.474,0.709) [0.709,1] 边坡高度 0.740 [0,0.291) [0.291,0.642) [0.642,0.894) [0.894,1] 冗
余
度安全预算实际投入 0.894 [0,0.384) [0.384,0.629) [0.629,0.869) [0.869,1] 人员调度效率 0.412 [0,0.329) [0.329,0.727) [0.727,0.960) [0.960,1] 管理制度满意度 0.571 [0,0.127) [0.127,0.502) [0.502,0.848) [0.848,1] 防护设备储备率 0.559 [0,0.486) [0.486,0.741) [0.741,0.915) [0.915,1] 施工信息备份情况 0.384 [0,0.294) [0.294,0.589) [0.589,0.792) [0.792,1] 施工材料储备天数 0.818 [0,0.312) [0.312,0.691) [0.691,0.849) [0.849,1] 效
率
度应急演练培训频率 0.574 [0,0.225) [0.225,0.479) [0.479,0.713) [0.713,1] 设备故障率 0.336 [0,0.154) [0.154,0.478) [0.478,0.785) [0.785,1] 施工设备的抢修效率 0.596 [0,0.225) [0.225,0.574) [0.574,0.790) [0.790,1] 应急预案完备度 0.614 [0,0.358) [0.358,0.514) [0.514,0.816) [0.816,1] 应急疏散通道距离 0.406 [0,0.157) [0.157,0.434) [0.434,0.805) [0.805,1] 适
应
度超前地质预报准确率 0.755 [0,0.342) [0.342,0.691) [0.691,0.843) [0.843,1] 智能设备配备百分比 0.836 [0,0.271) [0.271,0.604) [0.604,0.914) [0.914,1] 施工信息的智能化处理水平 0.937 [0,0.351) [0.351,0.663) [0.663,0.858) [0.858,1] 传感器覆盖均匀性 0.592 [0,0.254) [0.254,0.471) [0.471,0.753) [0.753,1] 表 3 高边坡施工评价指标关联度
Table 3. Correlation degree of high slope construction evaluation index
评价指标 评价等级 N1 N2 N3 N4 c1 -0.487 -1.460 0.413 -0.349 c2 -0.199 -0.383 -0.164 0.302 c3 -0.250 1.528 0.219 -0.268 c4 -3.871 -0.606 -0.146 0.256 c5 -0.624 -0.170 -0.238 0.730 c6 -0.399 -0.393 0.002 0.005 c7 0.466 0.207 -0.433 -0.570 c8 0.247 2.151 -1.717 -0.915 c9 -0.142 0.286 -0.292 -0.447 c10 -0.189 0.606 -0.546 -0.714 c11 -0.444 -0.161 0.193 -0.377 c12 -0.450 -4.565 0.406 -0.246 c13 -0.933 0.792 -0.412 -0.945 c14 -0.510 -0.499 0.957 -0.604 c15 -0.522 -0.335 0.400 -0.275 c16 -0.929 0.109 -0.154 -0.606 c17 -0.201 -0.075 0.236 -0.163 c18 -1.202 -0.650 0.921 -0.207 c19 -0.544 -0.494 -0.172 0.169 c20 -0.966 -0.690 0.570 -0.692 表 4 安全韧性指标权重
Table 4. Weights of security resilience indicators
指标 权重 指标 权重 c1 0.050 c11 0.012 c2 0.076 c12 0.072 c3 0.034 c13 0.057 c4 0.083 c14 0.071 c5 0.048 c15 0.059 c6 0.061 c16 0.053 c7 0.042 c17 0.071 c8 0.023 c18 0.039 c9 0.016 c19 0.037 c10 0.045 c20 0.042 表 5 综合关联度和评价等级
Table 5. Comprehensive relevance and evaluation rating
综合关联度 N1 N2 N3 N4 评价等级 稳定度 -0.425 -0.133 -0.007 0.053 Ⅳ级 冗余度 0.009 0.089 -0.085 -0.090 Ⅱ级 效率度 -0.203 -0.332 0.089 -0.164 Ⅲ级 适应度 -0.124 -0.079 0.071 -0.043 Ⅲ级 总体 -0.743 -0.456 0.067 -0.244 Ⅲ级 表 6 各评价指标隶属等级
Table 6. Each evaluation index belongs to the grade
评价指标 一级指标 二级指标 Ⅰ级 / / Ⅱ级 冗余度 持续供电率、人员调度效率、管理制度满意度、防护设备储备率、施工信息备份情况、设备故障率、应急疏散通道距离 Ⅲ级 效率度
适应度作业人员经验、施工材料储备天数、应急演练培训频率、施工设备的抢修效率、应急预案完备度、超前地质预报准确率、智能设备配备百分比、传感器覆盖均匀性 Ⅳ级 稳定度 安全员巡查频次、岩石抗压强度、边坡高度、安全预算实际投入、施工信息的智能化处理水平 表 7 专家调查法和LEC法评估结果
Table 7. Evaluation results of expert survey and LEC method
评价内容 评价方法 专家调查法
(风险程度)LEC法
(危险等级)建设规模 较低 稍有危险 地质条件 较低 稍有危险 诱发因素 中等 一般危险 施工环境 较低 稍有危险 资料完整性 高 显著危险 -
[1] 孟建丹, 商红标. 浅析高速公路施工安全事故的一般成因及应对措施[J]. 湖南交通科技, 2010, 36(2): 76-78. doi: 10.3969/j.issn.1008-844X.2010.02.025MENG J D, SHANG H B. The analysis of the general causes and countermeasures of highway construction safety accidents[J]. Hunan Communication Science and Technology, 2010, 36(2): 76-78. (in Chinese) doi: 10.3969/j.issn.1008-844X.2010.02.025 [2] 刘鹏君. 高速公路高边坡稳定性评价及加固措施对比分析[J]. 交通世界, 2024(10): 34-36. doi: 10.3969/j.issn.1006-8872(s).2024.10.012LIU P J. Stability evaluation of highway high slope and comparative analysis of strengthening measures[J]. Transpo World, 2024(10): 34-36. (in Chinese) doi: 10.3969/j.issn.1006-8872(s).2024.10.012 [3] 冯文凯, 石豫川, 柴贺军, 等. 缓倾角层状高边坡变形破坏机制物理模拟研究[J]. 中国公路学报, 2004, 17(2): 32-36. doi: 10.3321/j.issn:1001-7372.2004.02.007FENG W K, SHI Y C, CHAI H J, et al. Study of mechanism of deformation failure of a low-angle bedded high slope with physical simulation method[J]. China Journal of Highway and Transport, 2004, 17(2): 32-36. (in Chinese) doi: 10.3321/j.issn:1001-7372.2004.02.007 [4] 何忠明, 刘可, 付宏渊, 等. 基于集对可拓粗糙集方法的高边坡爆破施工安全风险评价[J]. 中南大学学报(自然科学版), 2017, 48(8): 2217- 2223.HE Z M, LIU K, FU H Y, et al. Safety risk assessment of high slope blasting construction based on set pair-extension analysis[J]. Journal of Central South University(Science and Technology), 2017, 48(8): 2217-2223. (in Chinese) [5] LIN D, CHEN P, MA J, et al. Assessment of slope construction risk uncertainty based on index importance ranking[J]. Bulletin of Engineering Geology and the Environment, 2019, 78: 4217-4228. doi: 10.1007/s10064-018-1387-2 [6] 胡惠华, 张嘉睿, 陈昌富, 等. 基于改进CRITIC赋权机器学习算法的边坡稳定性评价与预测模型[J]. 公路工程, 2023, 48(6): 74-83.HU H H, ZHANG J R, CHEN C F, et al. Slope stability evaluation and prediction model based on improved CRITIC weighted machine learning algorithm[J]. High Engineering, 2023, 48(6): 74-83. (in Chinese) [7] 杨静, 李尚广, 伍东卫, 等. 考虑降雨影响的高填路基稳定性模糊综合评价研究[J]. 交通科技, 2023, (3): 15-19, 33. doi: 10.3963/j.issn.1671-7570.2023.03.004YANG J, LI S G, WU D W, et al. A new fuzzy comprehensive evaluation method for stability of high fill subgrade considering the influence of rainfall[J]. Technology Science & Transportation, 2023, (3): 15-19, 33. (in Chinese) doi: 10.3963/j.issn.1671-7570.2023.03.004 [8] 姜波, 周娟. 基于AHP-FCE法的公路路堑高边坡施工安全风险评估[J]. 中国水运(下半月), 2024, 24(6): 113-115.JIANG B, ZHOU J. Construction safety risk assessment of highway high slope based on AHP-FCE method[J]. China Water Transport, 2024, 24(6): 113-115. (in Chinese) [9] HU Q G, XIE W X, HE Z M. Risk evaluation index system for operation security in high slope construction on freeway reconstruction and extension[J]. Applied Mechanics and Materials, 2013, 438: 1983-1986. [10] 周洪文, 冯鑫淼, 王宏, 等. 基于物元可拓组合模型的高速公路道路安全风险评价[J]. 重庆交通大学学报(自然科学版), 2024, 43(4): 37-44. doi: 10.3969/j.issn.1674-0696.2024.04.06ZHOU H W, FENG X M, WANG H, et al. Highway road safety risk evaluation based on material-element extensible combination model[J]. Journal of Chongqing Jiaotong University(Natural Science), 2024, 43(4): 37-44. (in Chinese) doi: 10.3969/j.issn.1674-0696.2024.04.06 [11] 杨兴洪, 王红星, 李德荣, 等. 建设期路堑高边坡地震稳定性评价方法及应用[J]. 公路工程, 2024, 49(2): 69-75.YANG X H, WANG H X, LI D R, et al. Evaluation method and application of seismic stability of high cutting slope during construction period[J]. Highway Engineering, 2024, 49(2): 69-75. (in Chinese) [12] 马飞, 赵成勇, 孙启鹏, 等. 重大公共卫生灾害主动限流背景下城市轨道交通网络集成韧性[J]. 交通运输工程学报, 2023, 23(1): 208-221.MA F, ZHAO C Y, SUN Q P, et al. Integrated resilience of urban rail transit network with active passenger flow restriction under major public health disasters[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 208-221. (in Chinese) [13] KONTOKOSTA C E, MALIK A. The resilience to emergencies and disasters index: applying big data to benchmark and validate neighborhood resilience capacity[J]. Sustainable Cities & Society, 2018, 36: 272-285. [14] 曲明辉. 基于熵权和物元可拓法的航运高质量发展评价研究[D]. 大连: 大连海事大学, 2023.QU M H. Research on the evaluation of high-quality development of shipping based on entropy weight and matter-element extension method[D]. Dalian: Dalian Maritime University, 2023. (in Chinese) [15] ZHAO X, ZHANG C, JU Y, et al. Evaluation of tunnel retro-reflective arch in an extra-long tunnel based on the matter-element extension method[J]. Accident Analysis & Prevention, 2021, 150: 105913. [16] 刘怡帆. 突发公共卫生事件下城市应急能力韧性评价——以2021年底西安市新冠疫情为例[D]. 西安: 长安大学, 2023.LIU Y F. Evaluation of urban emergency response capacity resilience under public health emergencies: a case study of the new crown epidemic in Xi'an at the end of 2021[D]. Xi'an: Changan University, 2023. (in Chinese) [17] MATTSSON L G, JENELIUS E. Vulnerability and resil-ience of transport systems-A discussion of recent research[J]. Transportation Research Part A: Policy and Practice, 2015, 81: 16-34. doi: 10.1016/j.tra.2015.06.002 [18] JACKSON S. A multidisciplinary framework for resilience to disasters and disruptions[J]. Journal of Integrated Design and Process Science, 2007, 11(2): 91-108. [19] 严修, 鲁誉, 谢谦, 等. 基于Bootstrap-DEA-Gini模型的公交线路运行效率评价方法[J]. 交通信息与安全, 2023, 41(1): 161-168. doi: 10.3963/j.jssn.1674-4861.2023.01.017YAN X, LU Y, XIE Q, et al. A method for evaluating operation efficiency of bus lines based on a Bootstrap-DEA-Gini model[J]. Journal of Transport Information and Safety, 2023, 41(1): 161-168. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.01.017 [20] POURKHOSRAVANI A, KALANTARI B. A review of current methods for slope stability evaluation[J]. Electronic Journal of Geotechnical Engineering, 2011, 16: 1245-1254. [21] SU H, YANG M, WEN Z. An approach using multi-factor combination to evaluate high rocky slope safety[J]. Natural Hazards and Earth System Sciences, 2016, 16 (6): 1449-1463. doi: 10.5194/nhess-16-1449-2016 [22] CHA K S, KIM T H. Evaluation of slope stability with topography and slope stability analysis method[J]. KSCE Journal of Civil Engineering, 2011, 15(2): 251-256. doi: 10.1007/s12205-011-0930-5
计量
- 文章访问数: 117
- HTML全文浏览量: 60
- PDF下载量: 5
- 被引次数: 0