An Operational Resilience Evaluation of Subway Station Based on Improved CRITIC-VIKOR Method
-
摘要: 地铁车站运营韧性具有多维性和复杂性。为了准确可靠地评价地铁车站运营韧性水平,提出了1种基于改进CRITIC-VIKOR法的评价方法。基于韧性理论和地铁车站运营特点,明确了地铁车站运营韧性的概念,并阐述了其压力、状态、响应3个维度的内涵。分析地铁车站运营中人、机、环、管这4个方面的关键要素,构建了8个一级指标。通过文献分析,建立了26个二级评价指标。通过采用标准差系数法衡量评价指标,并计算相关系数的绝对值,对CRITIC法进行改进,从而更加合理地给评价指标赋权,并结合VIKOR方法,提出了1种新的地铁车站运营韧性评价模型。对江苏省苏州市地铁4号线的同里站、流虹站、南门站进行实证分析,通过李克特量表收集相关数据,计算得到了26个评价指标的权重和3个车站的群体效用值、个体遗憾值、决策指标值,从而对地铁车站运营韧性进行量化分析和排序。与优序图法、层次分析法、熵值法等赋权方法相比,改进CRITIC法的偏差范围最小,为2%~40%,26个指标累计偏差最小,为553%。研究结果表明:在3个维度韧性中,压力韧性、状态韧性和响应韧性的权重分别为59.74%,21.48%,18.78%。在3个车站中,流虹站的运营韧性最高,其次是同里站和南门站。本文构建的评价模型能够为更加准确地评价地铁车站运营韧性提供理论支持。Abstract: The operational resilience of subway stations is characterized by its multidimensionality and complexity. To evaluate this resilience accurately and reliably, an improved A CRITIC-VIKOR based evaluation method is proposed. Based on resilience theory and the operational characteristics of subway stations, the concept of operational resilience for subway stations is defined, with a focus on its three core dimensions: pressure, state, and response. Key factors in four domains, including human, machine, environment, and management, are analyzed, leading to the development of 8 primary indexes. Through literature analysis, 26 secondary evaluation indexes are established. To assign more accurate weights to the indexes, the standard deviation coefficient method is applied, improving the CRITIC method through correlation coefficient analysis. By integrating the VIKOR method, a novel evaluation model for subway station operational resilience is proposed. An empirical analysis is conducted on Tongli station, Liuhong station, and Nanmen station of Suzhou subway Line 4. Data is collected using a Likert scale, and weights are calculated for the 26 evaluation indexes, as well as the group utility, individual regret, and decision-making index for each station. This allows for a quantitative ranking of the operational resilience of subway stations. Compared with superiority chart, analytic hierarchy process, and entropy method, the improved CRITIC method showed the smallest bias range, from 2% to 40%, with the cumulative bias of the 26 indexes being the smallest at 553%. The results indicate that the weights for pressure resilience, state resilience, and response resilience are 59.74%, 21.48%, and 18.78%, respectively. Among the three stations, Liuhong station demonstrates the highest operational resilience, followed by Tongli station and Nanmen station. The evaluation model provides theoretical foundation for more accurate evaluation of subway station operational resilience.
-
Key words:
- rail transit /
- station operation resilience /
- evaluation index system /
- improved CRITIC /
- VIKOR
-
表 1 城市地铁车站运营韧性评价指标体系
Table 1. Evaluation index system of urban subway station operation resilience
韧性维度 一级指标 二级指标 序号 压力P 车站人员风险(A1) (A11)乘客危险行为 1 (A12)人为故意破坏 2 (A13)突发大客流 3 车站设备风险(A2) (A14)工作人员违规操作 4 (A21)设备故障或带病作业 5 (A22)设备超强度运行 6 车站环境风险(A3) (A31)车站附近恶劣环境因素 7 (A32)车站内不良微环境因素 8 (A33)车站附近恶劣地质条件 9 状态S 车站监测预警能力(A4) (A41)监测设备的配置状况 10 (A42)监测预警能力 11 (A43)工作人员的隐患识别能力 12 车站安全管理能力(A5) (A51)车站安全管理制度 13 (A52)应急预案完备情况 14 (A61)应急队伍救援能力 15 车站应急保障能力(A6) (A62)应急物资配备情况 16 (A63)应急设备保障情况 17 (A64)员工应急培训情况 18 响应R 车站应急响应能力(A7) (A71)信息通报能力 19 (A72)工作人员应急救援能力 20 (A73)工作人员引导疏散能力 21 (A74)组织协调能力 22 车站应急恢复能力(A8) (A81)事故损失评价 23 (A82)车站恢复计划制定 24 (A83)车站恢复计划落实 25 (A84)经验总结及改进 26 表 2 车站韧性评价指标权重
Table 2. Weight of station resilience evaluation index
韧性维度% 一级指标% 二级指标 改进CRITIC指标权重% 权重排序 压力P(59.74) A1(26) A11 6.5 5 A12 6.93 3 A13 6.15 9 A2(14.22) A14 6.36 7 A21 7.11 1 A22 7.11 2 A3(19.58) A31 6.32 8 A32 6.44 6 A33 6.82 4 状态S(21.48) A4(6.94) A41 2.41 14 A42 2.2 23 A43 2.33 20 A5(5.45) A51 2.56 11 A52 2.89 10 A61 2.25 22 A6(9.09) A62 2.18 24 A63 2.48 13 A64 2.18 25 响应R(18.78) A7(9.5) A71 2.38 16 A72 2.34 19 A73 2.38 17 A74 2.4 15 A8(9.28) A81 2.11 26 A82 2.36 18 A83 2.54 12 A84 2.27 21 表 3 VIKOR分析结果
Table 3. VIKOR analysis results
车站 群体效用值Si 个体遗憾值Rj 决策指标值Qi 排名 同里站 0.756 1 0.068 2 0.968 7 2 流虹站 0.069 2 0.024 8 0.000 0 1 南门站 0.753 4 0.071 1 0.998 0 3 表 4 指标权重偏差
Table 4. Index weight deviation
指标 平均值% 优序图法% 层次分析法% 熵值法% 改进CRITIC% A11 6.078 58 37 85 10 A12 5.684 92 33 95 30 A13 5.828 61 35 88 8 A14 5.684 68 33 86 15 A21 5.516 83 32 80 35 A22 5.378 97 30 86 40 A31 5.676 68 33 85 15 A32 5.562 83 31 91 23 A33 5.722 76 34 86 24 A41 3.076 90 22 86 26 A42 3.254 108 15 86 37 A43 2.78 65 37 83 19 A51 2.824 61 35 83 13 A52 2.692 26 46 79 7 A61 2.77 66 38 83 21 A62 2.73 67 39 83 23 A63 2.446 16 60 78 2 A64 2.73 67 39 83 23 A71 3.066 91 22 86 27 A72 3.278 106 14 87 33 A73 3.066 91 22 86 27 A74 2.524 33 54 81 6 A81 3.234 110 16 8 39 A82 2.792 64 37 83 18 A83 2.56 31 52 81 2 A84 3.054 92 23 85 30 累计 1870 869 2202 553 -
[1] 陈绍清, 熊思斯, 何朝远, 等. 地铁深基坑坍塌事故安全风险分析[J]. 安全与环境学报, 2020, 20(1): 52-58.CHEN S Q, XIONG S S, HE C Y, et al. Safety risk analysis for the deep foundation pit collapse accidents in the subway construction system[J]. Journal of Safety and Environment, 2020, 20(1): 52-58. (in Chinese) [2] 王起全, 李登尧, 杨鑫刚. 地铁事故应急疏散模拟及优化研究[J]. 中国安全生产科学技术, 2019, 15(11): 170-178.WANG Q Q, LI D Y, YANG X G. Study on simulation and optimization of emergency evacuation in subway accident[J]. Journal of Safety Science and Technology, 2019, 15(11): 170-178. (in Chinese) [3] 王朔, 朱士友, 俞军燕, 等. 地铁车站应急预案VR模拟与情景设计[J]. 中国安全科学学报, 2019, 29(7): 183-188.WANG S, ZHU S Z, YU J Y, et al. VR based simulation and scenario design of emergency response plans for metro stations[J]. China Safety Science Journal, 2019, 29(7): 183-188. (in Chinese) [4] 任刚, 陈佳洁, 高瑾瑶, 等. 基于改进可拓物元法的地铁车站运营安全评价方法[J]. 城市轨道交通研究, 2020, 23(3): 136-139.REN G, CHEN J J, GAO J Y, et al. Safety assessment of metro station operation based on improved extension and matter element method[J]. Urban Mass Transit, 2020, 23(3): 136-139. (in Chinese) [5] 肖霁川, 邢颖. 基于熵权TOPSIS模型的地铁车站运营脆弱性评价方法[J]. 交通运输工程与信息学报, 2020, 18(2): 163-169.XIAO J C, XING Y. Vulnerability evaluation method for metro station operation based on entropy weight TOPSIS model[J]. Journal of Transportation Engineering and Information, 2020, 18(2): 163-169. (in Chinese) [6] 张渺. G1-EW组合赋权云模型下地铁运营安全风险评价[J]. 中国安全科学学报, 2022, 32(6): 163-170.ZHANG M. Risk assessment of metro operation based on G1-EW combination weighting cloud model[J]. China Safety Science Journal, 2022, 32(6): 163-170. (in Chinese) [7] 段晓红, 周翰霖, 熊怡莲. 基于多重影响力的公共交通网络中地铁车站脆弱性评价[J]. 安全与环境学报, 2022, 22(6): 3003-3013.DUAN X H, ZHOU H L, XIONG Y L. Vulnerability evaluation of subway station in public transportation network based on multiple influences[J]. Journal of Safety and Environment, 2022, 22(6): 3003-3013. (in Chinese) [8] AVCI O, OZBULUT O. Threat and vulnerability risk assessment for existing subway stations: a simplified approach[J]. Case Studies on Transport Policy, 2018, 6(4): 663-673. [9] FORERO-ORTIZ E, MARTINEZ-GOMARIZ E, CAÑAS PORCUNA M, et al. Flood risk assessment in an underground railway system under the impact of climate change: a case study of the Barcelona Metro[J]. Sustainability, 2020, 12 (13): 5291. [10] ALAWAD H, AN M, KAEWUNRUEN S. Utilizing an adaptive neuro-fuzzy inference system(ANFIS)for overcrowding level risk assessment in railway stations[J]. Applied Sciences, 2020, 10(15): 5156. [11] 焦柳丹, 李东荣, 张羽, 等. 暴雨灾害下城市轨道交通车站韧性关键影响因素研究[J]. 重庆交通大学学报(自然科学版), 2023, 42(5): 109-115.JIAO L D, LI D R, ZHANG Y, et al. Key influencing factors of urban rail transit station resilience under rainstorm disaster[J]. Journal of Chongqing Jiaotong University(Natural Science Edition), 2023, 42(5): 109-115. (in Chinese) [12] 黄亚江, 李书全, 李益锌, 等. 基于DEMATEL-ISM-ANP的地铁运营安全韧性综合评价[J]. 中国安全科学学报, 2022, 32(6): 171-177.HANG Y J, LI S Q, LI Y X, et al. Comprehensive evaluation on subway operation safety resilience based on DEMATEL-ISM-ANP[J]. China Safety Science Journal, 2022, 32 (6): 171-177. (in Chinese) [13] 陈兆芳, 徐政, 姜跃, 等. 地铁应急管理韧性评价指标体系与评价方法研究[J]. 交通工程, 2024, 24(7): 79-85, 92.CEHN Z F, XU Z, JIANG Y, et al. Research on resilience evaluation index system and evaluation method for metro emergency management[J]. Journal of Transportation Engineering, 2024, 24(7): 79-85, 92. (in Chinese) [14] ITANI A, SHALABY A. Assessing the bus bridging effectiveness on the operational resilience of the subway service in Toronto[J]. Transportation Research Record, 2021, 2675 (9): 1410-1422. [15] 吕彪, 高自强, 刘一骝. 道路交通系统韧性及路段重要度评估[J]. 交通运输系统工程与信息, 2020, 20(2): 114-121.LYU B, GAO Z Q, LIU Y L. Evaluation of road transportation system resilience and link importance[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 114-121. (in Chinese) [16] OUYANG M, DUEÑAS-OSORIO L, MIN X. A three-stage resilience analysis framework for urban infrastructure systems[J]. Structural Safety, 2012, 36: 23-31. [17] 薛亮, 赵胜川. 基于PSR模型及博弈组合赋权的城市轨道交通运营水平评价研究[J]. 铁道运输与经济, 2021, 43(5): 123-129.XUE L, ZHAO S C. Urban transit operation evaluation based on PSR model and game combination weighting[J]. Railway Transport and Economy, 2021, 43(5): 123-129. (in Chinese) [18] 马雪娇, 朱昌锋, 王学贵, 等. 不同编组运营模式下地铁运力与客流匹配度对比分析[J]. 铁道标准设计, 2023, 67(3): 22-29.MA X J, ZHU C F, WANG X G, et al. Comparative analysis of matching degree of subway capacity and passenger demand in different operation modes[J]. Railway Standard Design, 2023, 67(3): 22-29. (in Chinese) [19] 张立军, 张潇. 基于改进CRITIC法的加权聚类方法[J]. 统计与决策, 2015, 22: 65-68.ZHANG L J, ZHANG X. A weighted clustering method based on improved CRITIC method[J]. Statistics & Decision, 2015, 22: 65-68. (in Chinese) [20] 卫振林, 宋太春, 张翔. 基于改进VIKOR算法的现代有轨电车线网规划研究[J]. 交通运输系统工程与信息, 2017, 17 (3): 136-142.WEI Z L, SONG T C, ZHANG X. Modern tram line network planning based on the improved weighted VIKOR method[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(3): 136-142. (in Chinese) [21] 李振龙, 潘梦妞, 曲彦菘, 等. 基于IAHP-EWM-LDM的L3级自动驾驶接管过程安全性评价方法[J]. 交通信息与安全, 2023, 41(4): 14-23, 100.LI Z L, PAN M N, QU Y S, et al. A method for evaluating the safety over the takeover process of the level 3 automated vehicles based on IAHP-EWM-LDM[J]. Journal of Transport Information and Safety, 2023, 41(4): 14-23, 100. (in Chinese)
计量
- 文章访问数: 114
- HTML全文浏览量: 73
- PDF下载量: 4
- 被引次数: 0