留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城市轨道交通系统韧性研究现状及展望

张翕然 李正中 张馨 陈绍宽

张翕然, 李正中, 张馨, 陈绍宽. 城市轨道交通系统韧性研究现状及展望[J]. 交通信息与安全, 2024, 42(4): 1-11. doi: 10.3963/j.jssn.1674-4861.2024.04.001
引用本文: 张翕然, 李正中, 张馨, 陈绍宽. 城市轨道交通系统韧性研究现状及展望[J]. 交通信息与安全, 2024, 42(4): 1-11. doi: 10.3963/j.jssn.1674-4861.2024.04.001
ZHANG Xiran, LI Zhengzhong, ZHANG Xin, CHEN Shaokuan. Status and Prospects of Studies on Urban Rail Transit Resilience[J]. Journal of Transport Information and Safety, 2024, 42(4): 1-11. doi: 10.3963/j.jssn.1674-4861.2024.04.001
Citation: ZHANG Xiran, LI Zhengzhong, ZHANG Xin, CHEN Shaokuan. Status and Prospects of Studies on Urban Rail Transit Resilience[J]. Journal of Transport Information and Safety, 2024, 42(4): 1-11. doi: 10.3963/j.jssn.1674-4861.2024.04.001

城市轨道交通系统韧性研究现状及展望

doi: 10.3963/j.jssn.1674-4861.2024.04.001
基金项目: 

北京市自然科学基金项目 L191023

天津市交通运输科技发展计划项目 2024-B12

详细信息
    作者简介:

    张翕然(1995—),博士,工程师. 研究方向:轨道交通运营组织技术. E-mail: xiran.zhang@qq.com

    通讯作者:

    李正中(1984—),博士研究生,正高级工程师. 研究方向:轨道交通运营安全管理. E-mail: lizhengzhonglzz@163.com

  • 中图分类号: U298

Status and Prospects of Studies on Urban Rail Transit Resilience

  • 摘要: 具有良好韧性水平的城市轨道交通系统能够有效应对因自然灾害、人为失误、设施设备故障等因素导致的突发事件。为充分把握国内外城市轨道交通系统韧性相关的研究动态,运用文献计量分析法分析了相关研究文献的关键词和研究热点,发现早期的研究重点为轨道硬件结构韧性,运营服务韧性在近年来逐渐得到关注。结合韧性概念在物理学领域、生态学领域和城市管理领域的发展过程,阐释了城市轨道交通韧性的内涵。面向典型的社会事件和自然灾害场景,韧性评估方法的研究对象由车站扩展至线路再到线网,但在当前技术条件下评估对象的规模与颗粒度存在博弈关系,尚未完全挖掘宏微观、动静态对象间的联动影响机理。在韧性评估指标方面,对基于拓扑结构、运输能力、综合性能和业务环节的指标体系进行梳理,发现还可进一步从空间布局、工程条件、设施设备、人员配置、管理手段、社会力量等方面丰富现有指标体系。在指标度量方面,梳理了基于性能曲线的韧性建模、大数据分析、仿真模拟和数值分析共4种典型方法,发现基于单一方法的度量结果易受数据量、假设条件、指标权重分配等因素的影响,应综合使用多种方法度量不同类型和评估阶段的指标。在韧性提升和恢复方面,总结了包含事前预防、事中适应和事后恢复阶段的策略,发现既有研究多从运营管理角度出发,城市轨道交通基础设施灾后恢复的相关研究处于初步探索阶段。最后从①提升突发场景建模真实性;②考虑沿线城市空间和功能的影响进行动态细粒度分析;③探究突发事件影响传播机理以刻画系统内部变化;④研究韧性评估与提升效果验证方法共4个方面展望未来轨道交通系统韧性研究的发展方向。

     

  • 图  1  城市轨道交通韧性研究综述架构图

    Figure  1.  Flow chart of overview on urban rail transit resilience

    图  2  2018—2023年国内外轨道交通韧性研究年发文量

    Figure  2.  Annual publication volume of research on urban rail transit resilience from 2018 to 2023

    图  3  城市轨道交通韧性研究关键词分布

    Figure  3.  Distribution of keywords of international research on urban rail transit resilience

    图  4  突发事件下城市轨道交通线网运输能力变化图

    Figure  4.  Changes in transportation capacity of urban rail transit network under emergency

    图  5  系统韧性三角形模型示意图

    Figure  5.  Schematic of the triangular model of system resilience

    表  1  韧性特征及其定义

    Table  1.   Characteristics of resilience and their definitions

    韧性特征 定义
    鲁棒性 线网部分车站或线路遭受干扰甚至破坏后仍能维持运行的能力[8-10]
    冗余性 具备满足基础客运功能要求的备选运输组织方案,并能够实现快速切换,初步缓解突发事件对运营的冲击[10-11]
    适应性 发生突发事件时,系统能够利用现有车辆、乘务、线路设施设备等资源迅速应变,制定临时行车调整及客流疏导方案的能力[10-11]
    恢复性 突发事件结束后,线网恢复正常行车和客运组织秩序所需的时间、经济成本等[12-13]
    下载: 导出CSV

    表  2  常用韧性度量模型

    Table  2.   Resilience evaluation models

    模型分类 模型函数 模型特征
    基础模型1:系统韧性三角形模型[9] $R=\int_{t_0}^{t_1}[100-\phi(t)] \mathrm{d} t $
    式中:ϕ(t)为系统性能;t0为扰动开始时间;t1为恢复到正常状态时间
    衡量性能损失累积值,但难以反应性能的变化过程特征
    基础模型2:实际性能曲线与时间轴围成的面积和时间的比值[35] $ R=\frac{\int_{t_0}^{t_1} \phi(t) \mathrm{d} t}{t_1-t_0}$
    式中:ϕ(t)为系统性能;t0为扰动开始时间;t1为恢复到正常状态时间
    反应突发事件过程中系统的平均剩余性能,但系统性能极值对结果影响较大
    拓展模型1:实际性能曲线与时间轴围成的面积和目标性能曲线与时间轴围成的面积之比值[36] $ R=\frac{\int_{t_0}^{t_1} P(t) \mathrm{d} t}{\int_{t_0}^{t_1} T P(t) \mathrm{d} t}$
    式中:P(t)为实际系统性能;TP(t)为目标系统性能
    量化性能下降的百分比程度,但目标性能测算条件的界定会对结果产生较大影响
    拓展模型2:系统恢复性能与损失性能比值[37] $\begin{gathered} R_\phi\left(t \mid e^j\right)=\frac{\phi\left(t \mid \mathrm{e}^j\right)-\phi\left(t_d \mid \mathrm{e}^j\right)}{\phi\left(t_0\right)-\phi\left(t_d \mid \mathrm{e}^j\right)}, \\ t \in\left(t_s, t_f\right) \end{gathered} $
    式中:ϕ(t|ej)为系统遭受突发事件ej在时刻t下的性能;ϕ(td|ej)为系统最低性能;ϕ(t0)为突发事件前的系统功能;ts为系统性能开始恢复的时刻;tf为系统性能恢复阶段结束的时刻
    度量某1个时刻的性能下降百分比,且该模型对系统理想性能的界定更为清楚
    下载: 导出CSV

    表  3  城市轨道交通常用韧性提升策略

    Table  3.   Resilience enhancement strategies for urban rail transit

    阶段 韧性提升策略
    事前 应急设施设备选址与配置、网络结构及衔接优化等
    事中 运营调整:赶点运行、扣车、变换交路、退车等 < br > 接驳服务:邻线协同调整、城市公交接驳等
    事后 车站及区间设施维修恢复、运营恢复等
    下载: 导出CSV
  • [1] 中国城市轨道协会. 城市轨道交通2016-2023年度统计和分析报告[EB/OL]. (2024-03-29)[2024-10-09]. https://www.camet.org.cn/tjxx.

    ChinaAssociationofMetros. Statisticalandanalysisreportonurbanrailtransitfrom2016to2023[EB/OL]. (2024-03-29)[2024-10-09]. https://www.camet.org.cn/tjxx. (in Chinese)
    [2] FOLKE C. Resilience: the emergence of a perspective for social-ecological systems analyses[J]. Global Environmental Change, 2006, 16(3): 253-267. doi: 10.1016/j.gloenvcha.2006.04.002
    [3] 廖英泽, 王国盛, 李喆, 等. 城市地下基础设施韧性发展现状及策略[J]. 防灾减灾工程学报, 2022, 42(6): 1183-1190.

    LIAO Y Z, WANG G S, LI Z, et al. Development status and strategy of urban underground infrastructure resilience[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(6): 1183-1190. (in Chinese)
    [4] MURRAY-TUITE P M. A comparison of transportation network resilience under simulated system optimum and user equilibrium conditions[C]. 2006 Winter Simulation Conference, California, U. S. A: INFORMS-SIM, 2006.
    [5] AZOLIN L G, SILVA A N R D, PINTO N. Incorporating public transport in a methodology for assessing resilience in urban mobility[J]. Transportation Research Part D: Transport and Environment, 2020, 85: 102386. doi: 10.1016/j.trd.2020.102386
    [6] YIN J, REN X, LIU R, et al. Quantitative analysis for resilience-based urban rail systems: a hybrid knowledge-based and data-driven approach[J]. Reliability Engineering & System Safety, 2022, 219: 108183.
    [7] 陈群, 黄骞, 陈哲, 等. 基于贝叶斯网络的地铁工程系统韧性评价[J]. 中国安全科学学报, 2018, 28(11): 98-103.

    CHEN Q, HUANG Q, CHEN Z, et al. Quantitative evaluation of resilience of metro engineering system based on Bayesian networks[J]. China Safety Science Journal, 2018, 28(11): 98-103. (in Chinese)
    [8] KAMESHWAR S, COX D T, BARBOSA A R, et al. Probabilistic decision-support framework for community resilience: Incorporating multi-hazards, infrastructure interdependencies, and resilience goals in a Bayesian network[J]. Reliability Engineering & System Safety, 2019, 191: 106568.
    [9] BRUNEAU M, CHANG S, EGUCHI R T, et al. A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake Spectra, 2003, 19(4): 733-752. doi: 10.1193/1.1623497
    [10] WAN C, YANG Z, ZHANG D, et al. Resilience in transportation systems: a systematic review and future directions[J]. Transport Reviews, 2018, 38(4): 479-498. doi: 10.1080/01441647.2017.1383532
    [11] 郭庆军, 郝倩雯, 王艺洁, 等. 基于ANP-可拓云模型的地铁系统韧性评价[J]. 系统仿真学报, 2021, 33(4): 943-950.

    GUO Q J, HAO Q W, WANG Y J, et al. Subway system resilience evaluation in based on ANP-extension cloud model[J]. Journal of System Simulation, 2021, 33(4): 943-950. (in Chinese)
    [12] PUMPUNI-LENSS G, BLACKBURN T, GARSTENAUER A. Resilience in complex systems: an agent-based approach[J]. Systems Engineering, 2017, 20(2): 158-172. doi: 10.1002/sys.21387
    [13] CHANG J, JUNG D, JUN S, et al. Resilience conceptual framework for assessing the performance of transit service[J]. International Journal of Urban Sciences, 2020, 24(3): 339-353. doi: 10.1080/12265934.2019.1687319
    [14] 陈锦渠, 张帆, 彭其渊, 等. 大客流下城市轨道交通车站韧性评估及划分[J]. 安全与环境学报, 2022, 22(6): 2994-3002.

    CHEN J Q, ZHANG F, PENG Q Y, et al. Resilience assessment and partition of an urban rail transit station under large passenger flow[J]. Journal of Safety and Environment, 2022, 22(6): 2994-3002. (in Chinese)
    [15] 焦柳丹, 李东荣, 张羽, 等. 暴雨灾害下城市轨道交通车站韧性关键影响因素研究[J]. 重庆交通大学学报(自然科学版), 2023, 42(5): 109-115. doi: 10.3969/j.issn.1674-0696.2023.05.14

    JIAO L D, LI D R, ZHANG Y, et al. Key influencing factors of urban rail transit station resilience under rainstorm disaster[J]. Journal of Chongqing Jiaotong University (Natural Science), 2023, 42(5): 109-115. (in Chinese) doi: 10.3969/j.issn.1674-0696.2023.05.14
    [16] 李东荣. 暴雨灾害下城市轨道交通线路韧性评估研究[D]. 重庆: 重庆交通大学, 2022.

    LI D R. Research on resilience evaluation of urban rail transit line under rainstorm disaster[D]. Chongqing: Chongqing Jiaotong University, 2022. (in Chinese)
    [17] 宁尧, 魏运, 豆飞, 等. 基于渗流的城市轨道交通系统线路韧性评估[C]. 第十七届中国智能交通年会. 成都: 中国智能交通协会, 2022.

    NING Y, WEI Y, DOU F, et al. Resilience assessment of urban rail transit lines based on percolation[C]. 17th Annual Conference of ITS China, Chengdu, China: ITS China, 2022. (in Chinese)
    [18] LU Q C. Modeling network resilience of rail transit under operational incidents[J]. Transportation Research Part A: Policy and Practice, 2018, 117: 227-237. doi: 10.1016/j.tra.2018.08.015
    [19] 马飞, 赵成勇, 孙启鹏, 等. 重大公共卫生灾害主动限流背景下城市轨道交通网络集成韧性[J]. 交通运输工程学报, 2023, 23(1): 208-221.

    MA F, ZHAO C Y, SUN Q P, et al. Integrated resilience of urban rail transit network with active passenger flow restriction under major public health disasters[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 208-221. (in Chinese)
    [20] 霍小森, 舒鑫宇, 焦柳丹. 突发公共卫生事件下城市轨道交通系统适灾韧性评估[J]. 都市快轨交通, 2023, 36(5): 152-158. doi: 10.3969/j.issn.1672-6073.2023.05.022

    HUO X S, SHU X Y, JIAO L D. Disaster resilience assessment of urban rail transit systems under public health emergencies[J]. Urban Rapid Rail Transit, 2023, 36(5): 152-158. (in Chinese) doi: 10.3969/j.issn.1672-6073.2023.05.022
    [21] 黄亚江, 康飞, 易杰, 等. 基于ISM-ANP-Fuzzy算法的地铁车站火灾安全韧性评价体系[J]. 城市轨道交通研究, 2023, 26(11): 31-35.

    HUANG Y J, KANG F, YI J, et al. Evaluation system for fire safety resilience of subway stations based on ISM-ANP-Fuzzy algorithm[J]. Urban Mass Transit, 2023, 26 (11): 31-35. (in Chinese)
    [22] GUO K, ZHANG L. Adaptive multi-objective optimization for emergency evacuation at metro stations[J]. Reliability Engineering and System Safety, 2022, 219: 108210. doi: 10.1016/j.ress.2021.108210
    [23] 何郑, 杨宇轩, 颜红艳, 等. 暴雨内涝灾害下地铁项目施工韧性评估与实证研究[J]. 铁道科学与工程学报, 2023, 20(12): 4781-4790.

    HE Z, YANG Y X, YAN H Y, et al. Assessment and empirical research for construction resilience of railway projects under waterlogging disasters[J]. Journal of Railway Science and Engineering, 2023, 20(12): 4781-4790. (in Chinese)
    [24] LI Y, HE Q, SHEN J. Risk assessment on the effect of weather factors on civil engineering facilities in a metro system[C]. 5th International Conference on Transportation Engineering, Dalian, China: Southwest Jiaotong University, 2015.
    [25] LYU H M, SHEN S, ZHOU A, et al. Perspectives for flood risk assessment and management for mega-city metro system[J]. Tunnelling and Underground Space Technology, 2019, 84: 31-44. doi: 10.1016/j.tust.2018.10.019
    [26] WANG G, LIU Y, HU Z, et al. Flood risk assessment of subway systems in metropolitan areas under land subsidence scenario: a case study of Beijing[J]. Remote Sensing, 2021, 13(4): 637. doi: 10.3390/rs13040637
    [27] WU H, WANG J, LIU S, et al. Research on decision-making of emergency plan for waterlogging disaster in subway station project based on linguistic intuitionistic fuzzy set and TOPSIS[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 4825-4851. doi: 10.3934/mbe.2020263
    [28] 黄莺, 刘梦茹, 魏晋果, 等. 基于韧性曲线的城市地铁网络恢复策略研究[J]. 灾害学, 2021, 36(1): 32-36. doi: 10.3969/j.issn.1000-811X.2021.01.007

    HUANG Y, LIU M R, WEI J G, et al. Research on urban metro network recovery strategy based on resilience curve[J]. Journal of Catastrophology, 2021, 36(1): 32-36. (in Chinese) doi: 10.3969/j.issn.1000-811X.2021.01.007
    [29] MARTELLO M V, WHITTLE A J, KEENAN J M, et al. Evaluation of climate change resilience for Boston's rail rapid transit network[J]. Transportation Research Part D: Transport and Environment, 2021, 97: 102908. doi: 10.1016/j.trd.2021.102908
    [30] D'LIMA M, MEDDA F. A new measure of resilience: an application to the London underground[J]. Transportation Research Part A: Policy and Practice, 2015, 81: 35-46. doi: 10.1016/j.tra.2015.05.017
    [31] JIN J G, TANG L C, SUN L, et al. Enhancing metro network resilience via localized integration with bus services[J]. Transportation Research Part E: Logistics and Transportation Review, 2014, 63: 17-30. doi: 10.1016/j.tre.2014.01.002
    [32] 陶婵娟. 考虑应急资源配置的地铁网络韧性评估与优化[D]. 武汉: 华中科技大学, 2020.

    TAO C J. A resilience evaluation and optimization framework for metro networks considering emergency resource allocation[D]. Wuhan: Huazhong University of Science and Technology, 2020. (in Chinese)
    [33] 吕彪, 管心怡, 高自强. 地铁网络服务韧性评估与最优恢复策略[J]. 交通运输系统工程与信息, 2021, 21(5): 198-205.

    LYU B, GUAN X Y, GAO Z Q. Evaluation and optimal recovery strategy of metro network service resilience[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(5): 198-205. (in Chinese)
    [34] 祝连波, 王世笛, 林陵娜, 等. 基于博弈论组合赋权-物元可拓模型的地铁车站抗涝韧性评估研究[J]. 灾害学, 2023, 38(3): 1-6. doi: 10.3969/j.issn.1000-811X.2023.03.001

    ZHU L B, WANG S D, LIN L N, et al. Based on the combination of game theory and weighted matter-element extension model study on waterlogging resilience assessment of metro stations[J]. Journal of Catastrophology, 2023, 38(3): 1-6. (in Chinese) doi: 10.3969/j.issn.1000-811X.2023.03.001
    [35] REED D A, KAPUR K C, CHRISTIE R D. Methodology for assessing the resilience of networked infrastructure[J]. IEEE Systems Journal, 2009, 3(2): 174-180. doi: 10.1109/JSYST.2009.2017396
    [36] YODO N, WANG P, ZHOU Z. Predictive resilience analysis of complex systems using dynamic Bayesian networks[J]. IEEE Transactions on Reliability, 2017, 66(3): 761-770. doi: 10.1109/TR.2017.2722471
    [37] HENRY D, RAMIREZ-MARQUEZ J E. Generic metrics and quantitative approaches for system resilience as a function of time[J]. Reliability Engineering & System Safety, 2012, 99: 114-122.
    [38] ZHU Y, OZBAY K, XIE K, et al. Using big data to study resilience of taxi and subway trips for hurricanes Sandy and Irene[J]. Transportation Research Record, 2016, 2599(1): 70-80. doi: 10.3141/2599-09and Buildings||236||110795|2021|||
    [39] 周聪. 基于仿真的城市轨道交通换乘站韧性评价与优化[D]. 北京: 北京交通大学, 2022.

    ZHOU C. Resilient evaluation and optimization of urban rail transit transfer station based on simulation[D]. Beijing: Beijing Jiaotong University, 2022. (in Chinese)
    [40] 霍巧芬. 基于可拓云模型的地铁项目运营安全系统韧性评价研究[D]. 合肥: 安徽建筑大学, 2022.

    HUO Q F. Resilience evaluation of metro project operation safety system based on extension cloud model[D]. Hefei: Anhui Jianzhu University, 2022. (in Chinese)
    [41] TANG Y, HUANG S. Assessing seismic vulnerability of urban road networks by a Bayesian network approach[J]. Transportation Research Part D: Transport and Environment, 2019, 77: 390-402. doi: 10.1016/j.trd.2019.02.003
    [42] GOLDBECK N, ANGELOUDIS P, OCHIENG W Y. Resilience assessment for interdependent urban infrastructure systems using dynamic network flow models[J]. Reliability Engineering & System Safety, 2019, 188: 62-79.
    [43] 张翕然, 陈绍宽, 汪波, 等. 考虑替代救援可靠度的应急配置优化模型[J]. 浙江大学学报(工学版), 2021, 55(1): 20-30.

    ZHANG X R, CHEN S K, WANG B, et al. Emergency allocation optimization model considering reliability of replaceable rescue[J]. Journal of Zhejiang University(Engineering Science), 2021, 55(1): 20-30. (in Chinese)
    [44] HUANG Y, MANNINO C, YANG L, et al. Coupling time-indexed and big-M formulations for real-time train scheduling during metro service disruptions[J]. Transportation Research Part B: Methodological, 2020, 133: 38-61. doi: 10.1016/j.trb.2019.12.005
    [45] WANG Y, ZHAO K, D'ARIANO A, et al. Real-time integrated train rescheduling and rolling stock circulation planning for a metro line under disruptions[J]. Transportation Research Part B: Methodological, 2021, 152: 87-117. doi: 10.1016/j.trb.2021.08.003
    [46] ZHU Y, GOVERDE R M P. Railway timetable rescheduling with flexible stopping and flexible shortturning during disruptions[J]. Transportation Research Part B: Methodological, 2019, 123: 149-181. doi: 10.1016/j.trb.2019.02.015
    [47] LI S, ZHOU X, YANG L, et al. Automatic train regulation of complex metro networks with transfer coordination constraints: a distributed optimal control framework[J]. Transportation Research Part B: Methodological, 2018, 117: 228-253. doi: 10.1016/j.trb.2018.09.001
    [48] 崔欣, 路庆昌, 徐标, 等. 考虑公交接驳的地铁网络韧性评估及故障修复策略[J]. 都市快轨交通, 2023, 36(1): 93-98. doi: 10.3969/j.issn.1672-6073.2023.01.014

    CUI X, LU Q C, XU B, et al. Resilience evaluation and failure recovery strategy of metro network considering bus connection scenario[J]. Urban Rapid Rail Transit, 2023, 36(1): 93-98. (in Chinese) doi: 10.3969/j.issn.1672-6073.2023.01.014
    [49] 程静, 卢群, 吴同政, 等. 地铁网络级联失效恢复策略韧性评估方法[J]. 交通信息与安全, 2023, 41(4): 173-184. doi: 10.3963/j.jssn.1674-4861.2023.04.018

    CHENG J, LU Q, WU T Z, et al. A method for evaluating recovery strategies for cascade failures of metro networks[J]. Journal of Transport Information and Safety, 2023, 41(4): 173-184. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.04.018
    [50] 刘梦茹. 韧性视角下城市地铁网络最优恢复策略研究[D]. 西安: 西安建筑科技大学, 2021.

    LIU M R. Study on optimal recovery strategy of urban subway network from the perspective of resilience[D]. Xi'an: Xi'an University of Architecture and Technology, 2021. (in Chinese)
    [51] 潘守政, 何佳, 王英平, 等. 环线对地铁网络弹性的影响研究[J]. 交通运输工程与信息学报, 2022, 20(4): 100-110.

    PAN S Z, HE J, WANG Y P, et al. Influence of circle lines on the resilience of subway networks[J]. Journal of Transportation Engineering and Information, 2022, 20(4): 100-110. (in Chinese)
    [52] 马敏, 胡大伟, 舒兰, 等. 城市轨道交通网络韧性评估及恢复策略[J]. 吉林大学学报(工学版), 2023, 53(2): 396-404.

    MA M, HU D W, SHU L, et al. Resilience assessment and recovery strategy on urban rail transit network[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(2): 396-404. (in Chinese)
    [53] ZHANG H, LI S, WANG Y, et al. Collaborative real-time optimization strategy for train rescheduling and track emergency maintenance of high-speed railway: a lagrangian relaxation-based decomposition algorithm[J]. Omega, 2021, 102: 102371. doi: 10.1016/j.omega.2020.102371
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  835
  • HTML全文浏览量:  806
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-19
  • 网络出版日期:  2024-11-25

目录

    /

    返回文章
    返回