留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于贝叶斯推理与XGBoost的城市交叉口车道风险综合评价模型

汪勇杰 徐玥莹 苏倩 李琼 尤欣赏

汪勇杰, 徐玥莹, 苏倩, 李琼, 尤欣赏. 基于贝叶斯推理与XGBoost的城市交叉口车道风险综合评价模型[J]. 交通信息与安全, 2024, 42(4): 12-20. doi: 10.3963/j.jssn.1674-4861.2024.04.002
引用本文: 汪勇杰, 徐玥莹, 苏倩, 李琼, 尤欣赏. 基于贝叶斯推理与XGBoost的城市交叉口车道风险综合评价模型[J]. 交通信息与安全, 2024, 42(4): 12-20. doi: 10.3963/j.jssn.1674-4861.2024.04.002
WANG Yongjie, XU Yueying, SU Qian, LI Qiong, YOU Xinshang. A Comprehensive Evaluation Model of Lane-based Risk for Urban Intersections Based on Bayesian Inference and XGBoost[J]. Journal of Transport Information and Safety, 2024, 42(4): 12-20. doi: 10.3963/j.jssn.1674-4861.2024.04.002
Citation: WANG Yongjie, XU Yueying, SU Qian, LI Qiong, YOU Xinshang. A Comprehensive Evaluation Model of Lane-based Risk for Urban Intersections Based on Bayesian Inference and XGBoost[J]. Journal of Transport Information and Safety, 2024, 42(4): 12-20. doi: 10.3963/j.jssn.1674-4861.2024.04.002

基于贝叶斯推理与XGBoost的城市交叉口车道风险综合评价模型

doi: 10.3963/j.jssn.1674-4861.2024.04.002
基金项目: 

国家自然科学基金项目 71801020

陕西省社会科学基金项目 2022R053

陕西省自然科学基金项目 2023-JC-QN-0795

河北省自然科学基金项目 G2020208002

详细信息
    作者简介:

    汪勇杰(1988—),博士,副教授. 研究方向:城市交通安全管理等. E-mail: wyj@chd.edu.cn

    通讯作者:

    李琼(1983—),博士,讲师. 研究方向:城市交通安全管理等. E-mail: liqiong@chd.edu.cn

  • 中图分类号: X951

A Comprehensive Evaluation Model of Lane-based Risk for Urban Intersections Based on Bayesian Inference and XGBoost

  • 摘要: 针对城市信号控制交叉口车道风险研究不足及复杂交互带来的不确定性等问题,建立了基于贝叶斯推理与XGBoost的车道风险综合评价模型。基于西安市吉祥村、明光路和青松路这3个交叉口的交通视频数据,从时间逼近和空间逼近这2个维度构建了2个新的风险评价集,选取后侵入时间、最大速度、距离差和速度差作为核心指标,用以捕捉交叉口内的动态风险特征;并引入贝叶斯推理构建概率性评价方法,以解决复杂交互中的不确定性问题。随后进行XGBoost模型的SHAP值理论和Logistic回归,探究影响车道风险等级的特征重要程度和显著性。结果表明:①建立的车道风险综合评价模型在评估非机动车-汽车、行人-汽车与行人-非机动车等3类交互冲突时,识别中等和高风险的性能优于基准模型,特别是在极度危险交互的判定上更为合理,避免了基准模型的高估问题。②在常见的非机动车-汽车交互、行人-汽车交互和行人-非机动车交互中,仅有少部分为极度危险情况,但仍存在较多的中等风险,总占比分别为29.7%,20.8%,34.3%。③交叉口不同车道的风险存在显著差异,第1车道相较于第2、3、4车道更容易发生交通冲突。④在3类交互中,车道风险主要受速度、加速度和流量影响。非机动车-汽车交互在第1车道和隔离带宽度较小的路段风险最高,尤其是早高峰和右转车道。行人-汽车交互的车道风险因素集中于速度和流量,且第1车道风险较大。行人-非机动车交互中,较窄的非机动车道增加了冲突风险。

     

  • 图  1  城市交叉口俯视图

    Figure  1.  Top view of urban intersections

    图  2  非机动车-汽车交互的SHAP值

    Figure  2.  SHAP for motorcycle-car interaction

    图  3  行人-汽车交互的SHAP值

    Figure  3.  SHAP for pedestrian-car interaction

    图  4  行人-非机动车交互的SHAP值

    Figure  4.  SHAP for pedestrian-motorcycle interaction

    表  1  3类交互的统计信息

    Table  1.   Statistical information for three types of interactions

    变量 类别 非机动车-汽车 行人-汽车 行人-非机动车
    频数 占比//% 频数 占比//% 频数 占比//%
    车道 第1车道 1 173 46.68 1 716 67.24 9 056 82.62
    第2车道 363 14.44 281 11.01 748 6.82
    第3车道 344 13.69 307 12.03 546 4.98
    第4车道 633 25.19 248 9.72 611 5.57
    右转 1 173 46.68 1 716 67.24 9 056 82.62
    车道类型 直行 707 28.13 588 23.04 1 294 11.81
    左转 633 25.19 248 9.72 611 5.57
    车道宽度/m 3 2 344 98.27 1 365 53.49 3 764 34.34
    3.5 169 6.73 1 187 46.51 7 197 65.66
    隔离带宽度/m 0 714 28.41 693 27.16 1 816 16.57
    2 1 799 71.59 1 859 72.84 9 145 83.43
    2 714 28.41 693 27.16 1 816 16.57
    非机动车道宽度/m 3 940 37.41 150 5.88 271 2.47
    3.5 859 34.18 1 709 66.97 8 874 80.96
    早高峰(07:30—09:30) 1 424 56.67 1 139 44.63 5 900 53.83
    时间 午平峰(12:30—14:00) 612 24.35 783 30.68 2 744 25.03
    晚高峰(17:00—18:30) 477 18.98 630 24.69 2 317 21.14
    吉祥村交叉口 859 34.18 1 709 66.79 8 874 80.96
    地点 明光路交叉口 940 37.41 150 5.88 271 2.47
    青松路交叉口 714 28.41 693 27.16 1 816 16.57
    下载: 导出CSV

    表  2  3种评价方法对比

    Table  2.   Comparison of three evaluation methods

    交互类型 本文模型 基准模型1 基准模型2
    非机动车-汽车 行人-汽车 行人-非机动车 非机动车-汽车 行人-汽车 行人-非机动车 非机动车-汽车 行人-汽车 行人-非机动车
    安全 1 761(70.1%) 2 013(78.9%) 7 043(64.3%) 1 903(75.8%) 2 135(83.7%) 6 389(58.3%) 1 295(53.0%) 1 346(57.2%) 6 338(57.8%)
    危险 746(29.7%) 530(20.8%) 3 756(34.3%) 475(18.9%) 324(12.7%) 3 540(32.3%) 984(40.3%) 632(26.9%) 3 686(33.6%)
    极度危险 6(0.2%) 9(0.4%) 162(1.5%) 133(5.3%) 93(3.6%) 1 032(3.6%) 164(6.7%) 374(15.9%) 937(8.5%)
    下载: 导出CSV

    表  3  4种风险预测模型对比

    Table  3.   Comparison of four risk prediction models

    模型 准确率/% 精确率/% 召回率/% F-1分数/% AUC/%
    XGBoost 91.51 94.17 62.58 75.19 93
    GBDT 81.17 67.35 20.75 31.73 70
    决策树 76.39 43.79 42.14 42.95 65
    随机森林 81.83 65.88 34.14 44.98 79
    下载: 导出CSV

    表  4  3种交互类型Logistic回归表

    Table  4.   Three types of interaction Logistic regression table

    影响因素 非机动车(1)-汽车(2) 行人(1)-汽车(2) 行人(1)-非机动车(2)
    B P B P B P
    速度(2) 0.11 0.581 0.094 <0.01*** -0.075 <0.01***
    加速度(2) -0.02 0.739 -0.009 0.594 0.006 0.015
    速度(1) 0.106 <0.01*** -0.077 0.524 -0.026 0.411
    加速度(1) -0.09 0.123 0.01 0.517 0.001 0.721
    流量(2) -0.02 <0.01*** 0.001 0.078* 0 0.739
    流量(1) 0 0.921 0 0.836 0 0.016**
    早晨(07:30—9:30) 0.379 0.034** 0.086 0.65 -0.065 0.353
    中午(12:30—14:00) 1.145 <0.01*** 0.276 0.177 -0.154 0.051*
    第1车道 0.836 <0.01*** -0.533 0.46 -0.031 0.849
    第2车道 0.923 <0.01*** -0.283 0.274 -0.034 0.77
    第3车道 0.915 <0.01*** -0.53 0.829 0.11 0.373
    车道宽度3 m 0.48 0.066** -0.539 0.043** 0.021 0.892
    隔离带宽度0 m -2.07 <0.01*** 0.665 0.024** -0.022 0.891
    非机动车道宽度3 m -0.595 0.046** 0.685 0.189 -0.413 0.067*
    注:“***”为99%水平下显著;“**”为95%水平下显著;“*”为90%水平下显著。
    下载: 导出CSV
  • [1] CHEN W Q, WANG T, WANG Y J, et al. Lane-based distance-velocity model for evaluating pedestrian-vehicle interaction at non-signalized locations[J]. Accident Analysis & Prevention, 2022, 176: 106810.
    [2] MA Z J, MEI G, CUOMO S. An analytic framework using deep learning for prediction of traffic accident injury severity based on contributing factors[J]. Accident Analysis & Prevention, 2021, 160: 106322.
    [3] 王春勤, 牟瑞芳, 阮黄山. 基于灰云模型的城市道路交叉口交通冲突严重性研究[J]. 交通运输工程与信息学报, 2019, 17(3): 162-169.

    VUONG X C, MOU R F, NGUYEN H S. Study on traffic conflict severity of urban intersections based on grey cloud model[J]. Journal of Transportation Engineering and Information, 2019, 17(3): 162-169. (in Chinese)
    [4] WANG T, GE Y E, WANG Y J, et al. A novel model for real-time risk evaluation of vehicle-pedestrian interactions at intersections[J]. Accident Analysis & Prevention, 2024, 206: 107727.
    [5] 李杰, 曾叙砜, 孙领, 等. 全国道路安全水平的时空布局演化研究[J]. 中国安全科学学报, 2021, 31(12): 136-143.

    LI J, ZENG X F, SUN L, et al. Research on temporal and spatial evolution of road safety in China[J]. China Safety Science Journal, 2021, 31(12): 136-143. (in Chinese)
    [6] MOKHTARIMOUSAVI S, ANDERSON J C, AZIZINAMINI A, et al. Factors affecting injury severity in vehicle-pedestrian crashes: a day-of-week analysis using random parameter ordered response models and artificial neural networks[J]. International Journal of Transportation Science and Technology, 2020, 9(2): 100-115. doi: 10.1016/j.ijtst.2020.01.001
    [7] 石琦, 方勇, 胡华, 等. 平面信号控制交叉口有轨电车与机动车交通冲突风险评价模型[J]. 中国安全生产科学技术, 2020, 16(增刊1): 147-151.

    SHI Q, FANG Y, HU H, et al. Risk assessment model of traffic conflict between tram and vehicle at signalized intersections[J]. Journal of Safety Science and Technology, 2020, 16(S1): 147-151. (in Chinese)
    [8] ALMODFER R, XIONG S W, FANG Z X, et. al. Quantitative analysis of lane-based pedestrian-vehicle conflict at a non-signalized marked crosswalk[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2016, 42(3): 468-478.
    [9] 郭延永, 刘攀, 吴瑶, 等. 基于冲突模型的非常规信号交叉口安全评价[J]. 中国公路学报, 2022, 35(1): 85-92. doi: 10.3969/j.issn.1001-7372.2022.01.008

    GUO Y Y, LIU P, WU Y, et al. Safety evaluation of unconventional signalized intersection based on traffic conflict extreme model[J]. China Journal of Highway and Transport, 2022, 35(1): 85-92. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.01.008
    [10] JIANG C Z, QIU R, FU T, et al. Impact of right-turn channelization on pedestrian safety at signalized intersections[J]. Accident Analysis & Prevention, 2020, 136: 105399.
    [11] 朱顺应, 蒋若曦, 王红, 等. 机动车交通冲突技术研究综述[J]. 中国公路学报, 2020, 33(2): 15-33.

    ZHU S Y, JIANG R X, WANG H, et al. Review of research on traffic conflict techniques[J]. China Journal of Highway and Transport, 2020, 33(2): 15-33. (in Chinese)
    [12] GOVINDA L, RAJU M S K, SHANKAR K R. Pedestrian-vehicle interaction severity level assessment at uncontrolled intersections using machine learning algorithms[J]. Safety Science, 2022, 153: 105806. doi: 10.1016/j.ssci.2022.105806
    [13] OLSZEWSKI P, DABKOWSKI P, SZAGALA P, et al. Surrogate safety indicator for unsignalised pedestrian crossings[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 70: 25-36. doi: 10.1016/j.trf.2020.02.011
    [14] 葛慧敏, 周礼军, 薄云钰, 等. 基于交通冲突理论的道路安全评价技术研究综述[J]. 交通信息与安全, 2022, 40(6): 12-21. doi: 10.3963/j.jssn.1674-4861.2022.06.002

    GE H M, ZHOU L J, BO Y Y, et al. A review of road safety evaluation techniques based on traffic conflict theories[J]. Journal of Transport Information and Safety, 2022, 40(6): 12-21. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.06.002
    [15] 吕能超, 王玉刚, 周颖, 等. 道路交通安全分析与评价方法综述[J]. 中国公路学报, 2023, 36(4): 183-201. doi: 10.3969/j.issn.1001-7372.2023.04.016

    LYU N C, WANG Y G, ZHOU Y, et al. Review of road traffic safety analysis and evaluation methods[J]. China Journal of Highway and Transport, 2023, 36(4): 183-201. (in Chinese) doi: 10.3969/j.issn.1001-7372.2023.04.016
    [16] 褚昭明, 陈瑞祥, 刘金广. 城市道路无信号控制路段行人过街风险分级预警模型[J]. 交通信息与安全, 2023, 41(1): 53-61. doi: 10.3963/j.jssn.1674-4861.2023.01.006

    CHU Z M, CHEN R X, LIU J G. A model of risk classification and forewarning for pedestrian crossing behavior at unsignalized urban roadways[J]. Journal of Transport Information and Safety, 2023, 41(1): 53-61. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.01.006
    [17] 陆毅忱, 邹亚杰, 程凯, 等. 基于风险域的城市道路交叉口交通冲突分析方法[J]. 同济大学学报(自然科学版), 2021, 49(7): 941-948.

    LU Y C, ZOU Y J, CHENG K, et al. Analytical method of traffic conflict at urban road intersections based on risk region[J]. Journal of Tongji University (Natural Science), 2021, 49(7): 941-948. (in Chinese)
    [18] HU J C, LI X, CEN Y Q, et al. A roadside decision-making methodology based on deep reinforcement learning to simultaneously improve the safety and efficiency of merging zone[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 18620-18631. doi: 10.1109/TITS.2022.3157910
    [19] 胡立伟, 薛宇, 赵雪亭, 等. 驾驶人不同驾龄条件下公路交通风险致因耦合影响研究[J]. 安全与环境学报, 2023, 30(2): 1-9.

    HU L W, XUE Y, ZHAO X T, et al. Study on the coupling effect of road traffic risk causes under different driving ages[J]. Journal of Safety and Environment, 2023, 30(2): 1-9. (in Chinese)
    [20] XU C, ZHAO W., WANG C. An integrated threat assessment algorithm for decision-making of autonomous driving vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(6): 1-12. doi: 10.1109/TITS.2020.2995537
    [21] NOH S. Decision-making framework for autonomous driving at road intersections: safeguarding against collision, overly conservative behavior, and violation vehicles[J]. IEEE Transactions on Industrial Electronics, 2018, 66(4): 3275-3286.
    [22] 郭延永, 刘攀, 吴瑶, 等. 基于贝叶斯多元泊松-对数正态分布的交通冲突模型[J]. 中国公路学报, 2018, 31(1): 101-109.

    GUO Y Y, LIU P, WU Y, et al. Traffic conflict model based on bayesian multivariate poisson-lognormal normal distribution[J]. China Journal of Highway and Transport, 2018, 31 (1): 101-109. (in Chinese)
    [23] ZHANG C B, ZHOU B, CHEN G J, et al. Quantitative analysis of pedestrian safety at uncontrolled multi-lane mid-block crosswalks in China[J]. Accident Analysis & Prevention, 2017, 108: 19-26.
    [24] AMINI R E, YANG K, ANTONIOU C. Development of a conflict risk evaluation model to assess pedestrian safety in interaction with vehicles[J]. Accident Analysis & Prevention, 2022, 175: 106773.
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  41
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-26
  • 网络出版日期:  2024-11-25

目录

    /

    返回文章
    返回