Impacts of Connected Warning Information on Driver Behavior in Pedestrian-vehicle Conflict at the Mid-block of Urban Roads
-
摘要: 本文旨在研究网联预警信息对城市道路人车冲突中驾驶人行为的影响。利用驾驶模拟器设计城市道路驾驶场景与网联预警信息系统,考虑不同类型的视觉盲区,构建了6个典型的行人与机动车冲突场景。将招募的70名驾驶人划分为实验组和对照组,进行驾驶模拟器实验,采集实验过程中的驾驶人行为和车辆轨迹数据。利用生存分析法研究了不同因素对冲突过程中驾驶人避让反应时间与制动持续时间的影响,并建立面向冲突过程的人车事故风险预测模型,评估网联预警信息对驾驶行为的影响。结果表明:由公交车、路侧停车及树木与车辆等导致的视觉盲区会降低驾驶绩效,增加冲突过程中驾驶人的避让反应时间,降低制动持续时间;人行横道的存在使平均避让反应时间减少0.90 s,使平均制动持续时间增加0.41 s,并降低人车事故风险;网联预警信息可使驾驶人的平均避让反应时间减少0.52 s,平均制动持续时间增加0.40 s,使制动过程更加平稳,显著降低冲突过程中的事故风险,保障行人安全。Abstract: This study investigates the impact of connected warning information on driver behavior during pedestri-an-vehicle conflicts on urban roads. Using a driving simulator, urban driving scenarios and connected warning infor-mation systems are designed, incorporating various types of visual blind areas to create six typical pedestrian-vehi-cle conflicts. Seventy participants are recruited and divided into experimental and control groups to complete the simulator tests, during which driver behavior and vehicle trajectory data are collected. Survival analysis is employed to examine the effects of different factors on drivers' reaction times and braking durations during conflicts. Addi-tionally, pedestrian-vehicle crash prediction models are developed to assess crash risk and evaluate the influence of connected warning information on driver behavior. Results indicated that blind spots caused by buses, trees and cars, and parked cars negatively impacted driver performance, resulting in longer reaction times and shorter braking durations. Contrarily, the presence of crosswalks reduced the mean avoidance reaction time by 0.90 s, increased the mean braking duration by 0.41 s, and lowered pedestrian-vehicle crash risk. Furthermore, connected warning infor-mation is found to positively affect driver behavior, reducing mean avoidance reaction times by 0.52 s and increas-ing braking duration by 0.40 s. This leads to smoother braking processes and significantly decreased crash risks, thereby enhancing pedestrian safety.
-
表 1 参与者信息
Table 1. Information of participants
属性 类别 频数 均值 标准差 性别 男 50 女 20 年龄/岁 70 25.27 1.79 驾龄/年 新手驾驶人 36 2.47 0.50 经验驾驶人 34 5.91 1.54 表 2 冲突场景的描述
Table 2. Descriptions of the Conflict Scenarios
序号 视觉盲区类别 人行横道 场景描述 1 公交车 不存在 驾驶人的视野被右侧车道进站停靠的公交车遮挡,路侧的行人突然从公交车前方走出,引发交通冲突,见图 2(a) 2 路侧停车 不存在 路侧停车遮挡了驾驶人的视野,当车辆接近停车区域时,儿童从停放的车辆间冲出,形成交通冲突,见图 2(b) 3 树木 存在 车辆接近人行横道,行人从人行横道处过街,中央隔离带的树木遮挡了驾驶人的视野,形成交通冲突,见图 2(c) 4 树木和车辆 存在 左侧车道上行驶的车辆驾驶人发现了过街的行人,在人行横道前停车让行,让行的车辆与道路中央的树木遮挡了驾驶人的视野,产生交通冲突,见图 2(d) 5 树木和车辆 不存在 在左侧车道上行驶的车辆驾驶人发现了过街的行人,并及时停车让行,让行的车辆与道路中央的树木遮挡了驾驶人的视野,产生交通冲突,见图 2(e) 6 树木 不存在 行人从道路中间的树木中走出,在中间车道行驶的车辆驾驶员的视野被树木遮挡,产生交通冲突,见图 2(f) 表 3 变量的定义及描述
Table 3. Definitions and descriptions of the variables
变量 定义及取值 性别 0:女性;1:男性 驾龄/年 0:≤3;1: > 3 驾驶风格 1:保守型;2:普通型;3:激进型 视觉障碍物类别 0:树木;1:公交车;2:路侧停车;3:树木与车辆 是否存在人行横道 0:不存在;1:存在 避让反应时间/s 行人触发时刻与驾驶人首次采取避让措施时刻的时间间隔 制动持续时间/s 制动过程的持续时间 最大制动减速度/(m/s2) 制动过程中的最大制动减速度 减速度标准差/(m/s2) 制动过程中减速度的标准差 被试组别 0:对照组;1:实验组 是否发生人车事故 0:无事故;1:发生事故 表 4 平均制动持续时间与避让反应时间
Table 4. Mean braking duration and avoidance reaction time
变量名称 水平 制动持续时间/s 避让反应时间/s 被试组别 对照组 2.61 2.80 实验组 3.01 2.28 是否存在人行横道 不存在 2.67 2.84 存在 3.08 1.94 视觉障碍物类别 树木 3.14 1.86 公交车 2.29 3.41 路侧停车 2.56 3.10 树木与车辆 2.86 2.50 驾驶风格 激进型 2.34 2.67 普通型 2.85 2.51 保守型 2.97 2.51 表 5 避让反应时间的估计结果
Table 5. Estimated results of avoidance reaction time
变量类别 参数值 标准差 P值 是否存在人行横道 -0.151 0.028 < 0.001 被试组别 -0.256 0.032 < 0.001 公交车 0.517 0.038 < 0.001 路侧停车 0.392 0.037 < 0.001 树木与车辆 0.254 0.028 < 0.001 截距 0.932 0.043 < 0.001 ln(μ) 1.518 0.043 似然比检验 χ2(1) =12.91, p=0.000 2 样本量 420 表 6 制动持续时间的估计结果
Table 6. Estimated results of brake duration
变量类别 参数值 标准差 P值 驾驶风格(激进型) -0.214 0.056 < 0.001 被试组别 0.067 0.038 0.040 公交车 -0.162 0.043 < 0.001 路侧停车 -0.108 0.041 0.009 最大制动减速度 -0.040 0.013 0.002 减速度标准差 -0.041 0.016 0.010 截距 1.502 0.073 < 0.001 ln(μ) 1.429 0.044 似然比检验 χ2(1) =21.16, p= < 0.001 样本量 420 表 7 Logit模型估计结果
Table 7. Estimated results of the Logit model
变量类别 参数值 标准差 P值 性别 -1.602 0.598 0.007 驾驶风格(激进型) 1.296 0.699 0.044 避让反应时间 1.674 0.436 < 0.001 制动持续时间 -0.959 0.348 0.006 是否存在人行横道 -2.737 1.218 0.025 公交车 2.273 1.249 0.049 被试组别 -1.664 0.599 0.005 截距 -6.062 5 2.011 0.001 LL(β) -68.009 Rpse2 0.568 样本量 420 -
[1] WANG C S, SHAO Y C, ZHU T, et al. Investigating the influence of connected information on driver behaviour: an analysis of pedestrian-vehicle conflicts in the middle section of urban road[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2024, 107(1): 464-483. [2] 董傲然, 王长帅, 秦丹, 等. 机动车-行人事故中行人伤害严重程度分析[J]. 中国安全科学学报, 2020, 30(11): 141-147.DONG A R, WANG C S, QIN D, et al. Analysis on injury severity of pedestrian in motor vehicle-pedestrian accidents[J]. China Safety Science Journal, 2020, 30(11): 141-147. (in Chinese) [3] FU T, YU X, XIONG B, et al. A method in modeling interactive pedestrian crossing and driver yielding decisions during their interactions at intersections[J]. Transportation Research Part F: Traffic Psychology, 2022, 88(1): 37-53. [4] LI Y, SUN Y, XU C. Developing trends of automotive safety technology: an analysis based on traffc accident data[J]. Journal of Automotive Safety and Engergy, 2016, 7(2): 241-253. [5] GITELMAN V, BALASHA D, CARMEL R, et al. Characterization of pedestrian accidents and an examination of infrastructure measures to improve pedestrian safety in Israel[J]. Accident Analysis & Prevention, 2012, 44(1): 63-73. [6] ZHENG L, WEN C, GUO Y, et al. Investigating consecutive conflicts of pedestrian crossing at unsignalized crosswalks using the bivariate logistic approach[J]. Accident Analysis & Prevention, 2021, 162(3): 106402-106412. [7] ZHANG Z, LI H, HU H, et al. How yielding cameras affect consecutive pedestrian-vehicle conflicts at non-signalized crosswalks? A mixed bivariate generalized ordered approach[J]. Accident Analysis & Prevention, 2022, 178(4): 106851-106867. [8] MA Y, YAN X. Changes of EEG signals in vehicle-pedestrian conflicting events with front collision warning on side-parking road[C]. 2021 International Conference on Intelligent Traffic Systems and Smart City, Zhengzhou, China: SPIE, 2022. [9] MIAO Y, YAN X. The Impacts of warning release time and speed limit on driving behaviour and pedestrian-vehicle collision rate on side-parking road[C]. 2020 3rd International Symposium on Traffic Transportation and Civil Architecture, Dali, China: Tianjin University, 2021. [10] AHMAD N, KHATTAK A J, BOZDOGAN H. Understanding the role of driver behaviors and performance in safety-critical events: application of machine learning[J]. Journal of Transportation Safety & Security, 2024, 16(4), 1-40. [11] ZHAI J, LU G, CHEN F. Effect analysis of connected information on youth driver's performance in highway driving[C]. 25th International Conference on Intelligent Transportation Systems, Macau, China: IEEE, 2022. [12] HAQUE M M, OVIDO-TRSPALACIOS O, SHARMA A, et al. Examining the driver-pedestrian interaction at pedestrian crossings in the connected environment: a hazard-based duration modelling approach[J]. Transportation Research Part A: Policy and Practice, 2021, 150(4): 33-48. [13] 翟俊达, 鲁光泉, 陈发城, 等. 城市交叉口车路网联信息对青年驾驶人驾驶行为的影响分析[J]. 交通信息与安全, 2022, 40(1): 126-134. doi: 10.3963/j.jssn.1674-4861.2022.01.015ZHAI J D, LU G Q, CHEN F C, et al. Effects of information from connected vehicles and infrastructure on driving behavior of young drivers at urban Intersections[J]. Journal of Transport Information and Safety, 2022, 40(1): 126-134. (In Chinese). doi: 10.3963/j.jssn.1674-4861.2022.01.015 [14] LI J, ZHANG W, FENG Z, et al. A bibliometric review of driver information processing and application studies[J]. Journal of Traffic and Transportation Engineering(English Edition), 2023, 10(5): 787-807. doi: 10.1016/j.jtte.2023.05.004 [15] THOMPSON J P, MACKENZIE J R R, DUTSCHKE J K, et al. A trial of retrofitted advisory collision avoidance technology in government fleet vehicles[J]. Accident Analysis & Prevention, 2018, 115(1): 34-40. [16] 王长帅, 徐铖铖, 任卫林, 等. 自动驾驶接管过程中驾驶能力恢复状态对交通流振荡特性的影响[J]. 吉林大学学报(工学版), 2024(6): 1-11.WANG C S, XU C C, REN W L, et al. Investigating impacts of driving ability recovery state on characteristics of traffic oscillation in automated driving takeover process[J]. Journal of Jilin University (Engineering and Technology Edition), 2024(6): 1-11. (in Chinese) [17] ZHU T, WANG C, YANG C, et al. Evaluation of effectiveness of speed reduction markings on driving speed in highway tunnel entrance and exit areas[J]. Promet-Traffic Transportation, 2020, 32(1): 141-152. doi: 10.7307/ptt.v32i1.3203 [18] WANG C, Ren W, XU C, et al. Exploring the impact of conditionally automated driving vehicles transferring control to human drivers on the stability of heterogeneous traffic flow[J]. IEEE Transactions on Intelligent Vehicles, 2024, 28 (1): 1-17. [19] WANG C, XU C, PENG C, et al. Predicting the duration of reduced driver performance during the automated driving takeover process[J]. Journal of Intelligent Transportation Systems, 2024, 12(2): 1-16. [20] 王长帅, 徐铖铖, 邵永成, 等. 基于生存分析的自动驾驶接管时间分析[J]. 中国安全科学学报, 2023, 33(8): 142-148.WANG C S, XU C C, SHAO Y C, et al. Analysis of takeover time of automated driving based on survival analysis[J]. China Safety Science Journal, 2023, 33(8): 142-148. (in Chinese). [21] WASHINGTON S, KARLAFTIS M, MANNERING F, et al. Statistical and econometric methods for transportation data analysis[M]. New York: Chapman and Hall/CRC, 2020. [22] HENSHER D A, ROSE J M, GREENE W H. Applied choice analysis: a primer[M]. Cambridge: Cambridge University Press, 2005. [23] LI X, RAKOTONIRAINY A, YAN X. How do drivers avoid collisions? A driving simulator-based study[J]. Journal of Safety Research, 2019, 70: 89-96. doi: 10.1016/j.jsr.2019.05.002 [24] ALI Y, HAQUE M M. Modelling the response times of mobile phone distracted young drivers: a hybrid approach of decision tree and random parameters duration model[J]. Analytic Methods in Accident Research, 2023, 39: 100279-100296. doi: 10.1016/j.amar.2023.100279 [25] ALI Y, MAZHARUL HAQUE M, ZHENG Z, et al. A Bayesian correlated grouped random parameters duration model with heterogeneity in the means for understanding braking behaviour in a connected environment[J]. Analytic Methods in Accident Research, 2022, 35: 100221-100239. [26] BELLA F, NOBILI F. Driver-pedestrian interaction under legal and illegal pedestrian crossings[J]. Transportation Research Procedia, 2020, 45(1): 451-458. [27] YARED T, PATTERSON P, ALL E S A. Are safety and performance affected by navigation system display size, environmental illumination, and gender when driving in both urban and rural areas?[J]. Accident Analysis & Prevention, 2020, 142(3): 105585-105594. [28] ADAVIKOTTU A, VELAGA N R. Analysis of factors influencing aggressive driver behavior and crash involvement[J]. Traffic Injury Prevention, 2021, 22(1): 21-26. [29] ALI Y, SHARMA A, HAQUE M M, et al. The impact of the connected environment on driving behavior and safety: a driving simulator study[J]. Accident Analysis & Prevention, 2020, 144(2): 105643-105659.