留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于支持向量机与模型预测控制的混合动力船舶能量管理策略

梁天驰 袁裕鹏 童亮

梁天驰, 袁裕鹏, 童亮. 基于支持向量机与模型预测控制的混合动力船舶能量管理策略[J]. 交通信息与安全, 2024, 42(4): 125-135. doi: 10.3963/j.jssn.1674-4861.2024.04.014
引用本文: 梁天驰, 袁裕鹏, 童亮. 基于支持向量机与模型预测控制的混合动力船舶能量管理策略[J]. 交通信息与安全, 2024, 42(4): 125-135. doi: 10.3963/j.jssn.1674-4861.2024.04.014
LIANG Tianchi, YUAN Yupeng, TONG Liang. An Energy Management Strategy for Hybrid Ship Based on SVM and MPC[J]. Journal of Transport Information and Safety, 2024, 42(4): 125-135. doi: 10.3963/j.jssn.1674-4861.2024.04.014
Citation: LIANG Tianchi, YUAN Yupeng, TONG Liang. An Energy Management Strategy for Hybrid Ship Based on SVM and MPC[J]. Journal of Transport Information and Safety, 2024, 42(4): 125-135. doi: 10.3963/j.jssn.1674-4861.2024.04.014

基于支持向量机与模型预测控制的混合动力船舶能量管理策略

doi: 10.3963/j.jssn.1674-4861.2024.04.014
基金项目: 

国家重点研发计划项目 2021YFB2601601

详细信息
    作者简介:

    梁天驰(1995—),硕士研究生. 研究方向:新能源船舶能量管理. E-mail:liangtianchi@whut.edu.cn

    通讯作者:

    袁裕鹏(1980—),博士,副教授. 研究方向:船舶新能源系统设计、控制与安全. E-mail:ypyuan@whut.edu.cn

  • 中图分类号: U664.1

An Energy Management Strategy for Hybrid Ship Based on SVM and MPC

  • 摘要: 为了提高混合动力船舶能量利用效能,提升混合动力船舶燃油经济性,将在线工况识别与实时优化策略相结合,提出了基于支持向量机(support vector machine,SVM)与模型预测控制(model predictive control,MPC)的混合动力船舶能量管理策略。引入SVM理论,使用“美维凯越”号新能源游轮的实船数据,优化核函数类型及关键参数,构建船舶运行4个典型工况的在线识别模型;再通过对船舶当前时刻工况特征参数的分析与判断,确定船舶实时运行工况。以最小燃油消耗和保持储能单元荷电状态(state of charge,SOC)稳定为目标,以主机和复合储能单元之间的实时输出功率为优化变量,以功率需求预测模型为约束条件,构建模型预测控制MPC模型;为提高不同工况下功率需求预测的精度,提出基于多步马尔科夫模型的功率预测模型,并根据实时工况识别结果,更新MPC模型中的功率需求预测模型约束,实现船舶能量实时动态优化。最后,采用小波变换方法,将最优功率解分解成高频信号和低频信号;再根据复合储能单元中不同动力源工作特性的差异,将高频信号和低频信号分别分配给具有高功率密度的超级电容和具有高能量密度的蓄电池。为验证方法的有效性,开展了基于MATLAB的仿真实验,结果表明:在相同工况下,所提策略累计燃油消耗量为4 404.556 1 g,平均燃油消耗率为202.973 7 g/kWh;与基于单一模型预测控制的能量管理策略相比,所提方法可节省燃油消耗4.55%,验证了所提能量管理策略的有效性。

     

  • 图  1  船舶并联式混合动力系统拓扑结构图

    Figure  1.  Topological structure diagram of ship's parallel hybrid power system

    图  2  “美维凯越”号混合动力游船实船采集数据

    Figure  2.  Data collected by the actual ship of the "Meiwei Kaiyue" hybrid cruise ship

    图  3  训练工况

    Figure  3.  Training conditions

    图  4  测试工况

    Figure  4.  Test conditions

    图  5  训练工况的划分结果

    Figure  5.  The results of the division of training conditions

    图  6  交叉验证法寻优过程

    Figure  6.  Cross-validation method optimization process

    图  7  离线状态模型构建流程图

    Figure  7.  Flow chart of offline state model construction

    图  8  在线状态能量分配流程图

    Figure  8.  Flow chart of energy distribution in online state

    图  9  不同工况预测模型对应的状态转移概率矩阵

    Figure  9.  The state transition probability matrix corresponding to different working condition prediction models

    图  10  时域为5 s时,单预测模型与SVM+多预测模型预测结果对比

    Figure  10.  Comparison of prediction results between single prediction model and SVM+multiple prediction model when the time domain is 5 s

    图  11  SVM+MPC策略能量分配

    Figure  11.  SVM+MPC strategy energy distribution

    图  12  累计燃油消耗量对比

    Figure  12.  Comparison of cumulative fuel consumption

    图  13  3种策略的主机输出功率对比结果

    Figure  13.  Comparison results of main engine output power of three strategies

    图  14  SVM+MPC策略蓄电池与超级电容SOC

    Figure  14.  SVM+MPC strategy battery and super capacitor SOC changes

    表  1  主要设备参数

    Table  1.   Main equipment parameters

    主要设备 参数名称 参数值
    最大功率/kW 80
    主机 额定功率/kW 72
    最大转矩/Nm 478
    最大功率/kW 60
    电机 额定功率/kW 54
    最大转矩/Nm 358
    最高效率/% 95.5
    额定电压/V 384
    蓄电池 额定功率/kW 60
    额定容量/Ah 20
    最大充放电倍率/C 0.5
    工作电压/V(DC) 200~500
    超级电容 总电容量/F 10
    最大允许放电电流(10 s)/A 600(25 ℃)
    绝缘电压/V 2 500
    下载: 导出CSV

    表  2  各工况基本信息

    Table  2.   Basic information of each working condition

    工况类型 平均需求功率/kW 平均需求功率一阶导数 所占百分比/%
    工况1 20.085 0 0.002 2 37.56
    工况2 64.008 1 -0.006 7 24.50
    工况3 62.469 7 -0.003 7 11.44
    工况4 94.579 7 -0.004 0 26.50
    下载: 导出CSV

    表  3  核函数类型比较

    Table  3.   Comparison of kernel function types

    核函数类型 正确识别数/样本总数 准确度/%
    线性核函数 3 740/4 760 0.785 7
    多项式核函数 4 016/4 760 0.843 7
    径向基核函数 4 326/4 760 0.908 8
    Sigmoid核函数 1 763/4 760 0.370 4
    下载: 导出CSV

    表  4  预测效果比较

    Table  4.   Comparison of prediction effects

    时域/s 单预测模型Re SVM+多预测模型Re
    3 5.084 7 4.921 8
    5 7.182 7 6.781 2
    10 12.429 7 10.615 0
    15 16.913 3 12.848 1
    下载: 导出CSV

    表  5  仿真实验结果

    Table  5.   Simulation experiment results

    策略 累计耗油量/g 燃油消耗率/(g/kWh) 耗油量与DP策略比值
    DP 4 224.987 7 194.197 0 1
    MPC 4 496.674 6 211.533 1 1.064 3
    SVM+MPC 4 404.556 1 202.973 7 1.042 5
    下载: 导出CSV
  • [1] 严新平. 新能源在船舶上的应用进展及展望[J]. 船海工程, 2010, 39(6): 111-115. doi: 10.3963/j.issn.1671-7953.2010.06.031

    YAN X P. Progress review of new energy application in ship[J]. Ship & Ocean Engineering, 2010, 39(6): 111-115. (in Chinese) doi: 10.3963/j.issn.1671-7953.2010.06.031
    [2] YUAN Y P, WANG J X, YAN X P, et al. A review of multi-energy hybrid power system for ships[J]. Renewable and Sustainable Energy Reviews, 2020, 132: 1-20.
    [3] 李维波, 郝春昊, 高佳俊, 等. 舰船综合电力系统发展综述[J]. 中国舰船研究, 2020, 15(6): 1-11.

    LI W B, HAO C H, GAO J J, et al. Overview of the development of shipboard integrated power system[J]. Chinese Journal of Ship Research, 2020, 15(6): 1-11. (in Chinese)
    [4] 庞水, 林叶锦, 张均东, 等. 柴电混合动力船舶能量分配优化方法[J]. 船海工程, 2020, 49(3): 106-111. doi: 10.3963/j.issn.1671-7953.2020.03.023

    PANG S, LIN Y J, ZHANG J D, et al. On power distribution optimization method for diesel-electric hybrid ship[J]. Ship & Ocean Engineering, 2020, 49(3): 106-111. (in Chinese) doi: 10.3963/j.issn.1671-7953.2020.03.023
    [5] TORREGLOSA J P, GARCIA P, FERNANDEZ L M, et al. Hierarchical energy management system for stand-alone hybrid system based on generation costs and cascade control[J]. Energy Conversion and Management, 2014, 77(2): 514-526.
    [6] BESIKCI E B, KECECI T, ARSLAN O, et al. An application of fuzzy-AHP to ship operational energy efficiency measures[J]. Ocean Engineering, 2016, 121(15): 392-402.
    [7] 袁裕鹏, 王凯, 严新平. 混合动力船舶能量管理控制策略设计与仿真[J]. 船海工程, 2015, 44(2): 95-98. doi: 10.3963/j.issn.1671-7953.2015.02.025

    YUAN Y P, WANG K, YAN X P. Design and simulate of energy management control strategy for hybrid ship[J]. Ship & Ocean Engineering, 2015, 44(2): 95-98. (in Chinese) doi: 10.3963/j.issn.1671-7953.2015.02.025
    [8] 兰熙, 沈爱弟, 高迪驹, 等. 混合动力船舶能量管理系统的最优控制[J]. 电源技术, 2016(9): 1859-1862. doi: 10.3969/j.issn.1002-087X.2016.09.038

    LAN X, SHEN A D, GAO D J, et al. Optimal control of hybrid ship energy management system[J]. Chinese Journal of Power Sources, 2016, 40(9): 1859-1862. (in Chinese) doi: 10.3969/j.issn.1002-087X.2016.09.038
    [9] TANG R L, LI X, LAI J. A novel optimal energy-management strategy for a maritime hybrid energy system based on large-scale global optimization[J]. Applied Energy, 2018, 228: 254-264. doi: 10.1016/j.apenergy.2018.06.092
    [10] BASSAM A M, PHILLIPS A B, TURNOCK S R, et al. Development of a multi-scheme energy management strategy for a hybrid fuel cell driven passenger ship[J]. International Journal of Hydrogen Energy, 2017, 42(1): 623-635. doi: 10.1016/j.ijhydene.2016.08.209
    [11] 侯慧, 甘铭, 吴细秀, 等. 混合动力船舶能量管理研究综述[J]. 中国舰船研究, 2021, 16(5): 216-229.

    HOU H, GAN M, WU X X, et al. Review of hybrid ship energy management[J]. Chinese Journal of Ship Research, 2021, 16(5): 216-229. (in Chinese)
    [12] 牛礼民, 周亚洲, 吕建美, 等. 并联HEV工况识别能量管理与优化控制[J]. 控制工程, 2021, 28(3): 435-444.

    LIU L M, ZHOU Y Z, LV J M, et al. Energy management and optimization control based on driving cycle identification for parallel hybrid electric vehicle[J]. Control Engineering of China, 2021, 28(3): 435-444. (in Chinese)
    [13] ERICSSON E. Independent driving pattern factors and their influence on fuel-use and exhaust emission factors[J]. Transportation Research Part D, 2001, 6(5): 325-345. doi: 10.1016/S1361-9209(01)00003-7
    [14] 张风奇, 胡晓松, 许康辉, 等. 混合动力汽车模型预测能量管理研究现状与展望[J]. 机械工程学报, 2019, 55(10): 86-108.

    ZHANG F Q, HU X S, XU K H, et al. Current status and prospects for model predictive energy management in hybrid electric vehicles[J]. Journal of Mechanical Engineering, 2019, 55(10): 86-108. (in Chinese)
    [15] 汪海燕, 黎建辉, 杨风雷. 支持向量机理论及算法研究综述[J]. 计算机应用研究, 2014, 31(5): 1281-1286. doi: 10.3969/j.issn.1001-3695.2014.05.001

    WANG H Y, LI J H, YANG F L. Overview of support vector machine analysis and algorithm[J]. Application Research of Computers, 2014, 31(5): 1281-1286. (in Chinese) doi: 10.3969/j.issn.1001-3695.2014.05.001
    [16] 李民策, 王丽, 李锡云, 等. 基于支持向量机的电动汽车行驶工况识别方法[C]. 第21届中国系统仿真技术及其应用学术年会, 昆明: 中国自动化学会, 2020.

    LI M C, WANG L, LI X Y, et al. A driving condition recognition method for electric vehicle based on support vector machine[C]. The 21st China Annual Conference on System Simulation Technology and its Application. Kunming, China: Chinese Association of Automation, 2020. (in Chinese)
    [17] 许绍航, 席军强, 陈慧岩. 基于越野工况预测的混合动力履带车辆能量管理策略[J]. 兵工学报, 2019, 40(8): 1572-1579. doi: 10.3969/j.issn.1000-1093.2019.08.003

    XU S H, XI J Q, CHEN H Y. Energy management of hybrid electric tracked vehicle based on off-road condition prediction[J]. ACTA ARMAMENTARⅡ, 2019, 40(8): 1572-1579. (in Chinese) doi: 10.3969/j.issn.1000-1093.2019.08.003
    [18] ZHU Y C, ZHENG Y. Traffic identification and traffic analysis based on support vector machine[J]. Neural Computing and Applications, 2020, 32(7): 1903-1911. doi: 10.1007/s00521-019-04493-2
    [19] HOU J, SONG Z Y, HOFMANN H, et al. Adaptive model predictive control for hybrid energy storage energy management in all-electric ship microgrids[J]. Energy Conversion and Management, 2019, 198(10): 198-212.
    [20] 解少博, 刘通, 李会灵, 等. 基于马尔科夫链的并联PHEB预测型能量管理策略研究[J]. 汽车工程, 2018, 40(8): 871-877.

    XIE S B, LIU T, LI L L, et al. A study on predictive energy management strategy for a plug-in hybrid electric bus based on Markov chain[J]. Automotive Engineering. 2018, 40(8): 871-877. (in Chinese)
    [21] 潘钊, 商蕾, 高海波, 等. 燃料电池混合动力船舶复合储能系统与能量管理策略优化[J]. 大连海事大学学报, 2021, 47 (3): 79-85. doi: 10.3969/j.issn.1671-7031.2021.03.012

    PAN Z, SHANG L, GAO H B, et al. Optimization of composite energy storage system and energy management strategy for fuel cell hybrid ships[J]. Journal of Dalian Maritime University. 2021, 47(3): 79-85. (in Chinese) doi: 10.3969/j.issn.1671-7031.2021.03.012
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  35
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-05
  • 网络出版日期:  2024-11-25

目录

    /

    返回文章
    返回