Carbon Emission Prediction Method for Inland Ports Based on an Improved ASIF Model
-
摘要: 针对港口碳排放量中长期预测影响因素复杂、预测精度低等问题,提出了基于改进ASIF方法的内河集装箱港口碳排放量核算模型,旨在量化主要因素对港口长期碳排放量的影响,为针对性制定碳中和策略提供依据。将港口集装箱吞吐量、设备结构、能耗强度、排放因子等作为港口碳排放量影响因素,考虑集装箱运输链中“多过程、多设备”的特点,改进了ASIF(activity-modal structure-energy intensity-emission factor)模型,可实现从宏观到微观层面的碳排放量预测。基于改进ASIF模型的解释变量建立情景预测指标体系,并以长江干线某集装箱港口为例,对其基准情景(business-as-usual,BAU)和低碳情景(low-carbon,LC)下的吞吐量、设备构成、运输结构等进行预测和设定,进而核算船舶航行、船舶停泊、岸桥、内集卡、场桥和外集卡的碳排放量。采用单因素实验方法分析不同低碳发展策略下的减排潜力,结果表明:与现有核算模型相比,使用改进的ASIF模型计算案例港口碳排放量,偏差在10%以内;案例港口这2种预测情景下,随着集装箱吞吐量持续增长,基准情景至2060年碳排放尚未达峰,低碳情景下到2055年左右实现碳达峰;船舶排放控制、港机能效提升、港口能源结构优化、集疏运结构优化均为有效的低碳发展策略,但效果依次降低;采用上述方法减排,将在2020—2060年间分别可实现约19万、17万、14.4万及1.1万t的累计碳减排。Abstract: Addressing the complexities and low accuracy of prediction associated with medium-to-long-term forecasting of port carbon emissions, this study proposes a carbon emission prediction (CEP) model for inland container ports based on an improved activity-modal structure-energy intensity-emission factor (ASIF) method. The objective is to quantify the impact of primary factors on long-term port carbon emissions, thereby providing a basis for targeted carbon neutrality strategies. By considering port container throughput, equipment structure, energy consumption intensity, and emission factors as influential factors of port carbon emissions, and accounting for the "multi-process, multi-equipment" characteristics within the container transportation chain, an improved ASIF model is established, which enables CEP from macro to micro levels. A scenario prediction indicator system is developed based on the explanatory variables of the ASIF model. Taking a container port on the Yangtze River as an example, predictions are made for its throughput, equipment composition, and transportation structure under the business-as-usual (BAU) scenario and the low-carbon (LC) scenario. Subsequently, carbon emissions from ship navigation, ship berthing, quay cranes, internal container trucks, yard cranes, and external container trucks are calculated. Lastly, to analyze the emission reduction potential under different low-carbon development strategies, a single-factor experimental approach is employed. The results indicate that: ①compared to existing prediction models, the deviations of carbon emission by the improved ASIF are within 10%. ②Under BAU and LC scenarios for the case port, with the continuous growth of container throughput, carbon emissions have not yet peaked by the year 2060 in the BAU scenario, whereas they are projected to the peak around the year 2055 in the LC scenario. ③Ship emission control, energy efficiency improvement, energy structure optimization, and collection and distribution system optimization are all effective low-carbon development strategies, albeit with decreasing effectiveness. ④Between the year 2020 to 2060, these strategies could achieve cumulative carbon reductions of approximately 190 000, 170 000, 144 000, and 11 000 t, respectively.
-
表 1 模型对比验证
Table 1. Model comparison and verification
表 2 A港区2010—2021年集装箱吞吐量
Table 2. Container throughput of port A from 2010 to 2021
年份 吞吐量/万TEU 年份 吞吐量/万TEU 2010 40.6 2016 79.6 2011 46.0 2017 84.9 2012 51.3 2018 93.7 2013 60.4 2019 101.2 2014 65.2 2020 107.3 2015 71.5 2021 119.6 表 3 设备构成及运输结构
Table 3. Equipment composition and transportation structure
设备名称 占比/% 集疏运方式 占比/% 航行船(油) 100 停泊船(油) 90 公水 51 停泊船(岸电) 10 岸桥(电) 100 水水 45 内集卡(油) 96 内集卡(电) 4 外集卡(油) 100 铁水 4 轨道吊(电) 100 表 4 装卸设备能耗强度
Table 4. Energy consumption intensity of handling equipment
设备 能耗强度 岸桥/(kWh/TEU) 3.00 轨道式龙门吊/(kWh/TEU) 2.50 电动集卡/(kWh/km) 1.30 柴油集卡/(kg/t·km)* 0.012 注*:设集装箱平均重量为13t/TEU,每车可载2个20 ft标准集装箱或1个40 ft集装箱。 表 5 船舶能耗强度计算中的参数设置
Table 5. Parameter setting of ship energy consumption intensity calculation
参数 取值 参数 取值 主机额定负载率fM 0.85 泊岸时辅机负载因子LFmaneuverA 0.5 设计速度vd /(km/h) 20 停泊时辅机负载因子LFberthA 0.17 巡航速度vsail /(km/h) 16.425 主机燃油效率RM /(kg/kWh) 0.2 泊岸速度vmaneuver /(km/h) 8.212 5 辅机燃油效率RA /(kg/kWh) 0.2 巡航距离Lsail /km 11.25 泊位利用率Ui /(TEU/h)* 30 or 60 泊岸距离Lmaneuver /km 1 非生产性停泊时间Tw /h 4 巡航时辅机负载因子LFsailA 0.25 船舶箱位利用率η 0.8 注:小于400 TEU的船型取30 TEU/h;大于400 TEU的船型取60 TEU/h。 表 6 船舶的能耗强度
Table 6. Energy consumption intensity of ship
船型/TEU 航行能耗强度Iisail /(kg/TEU) 停泊能耗强度Iiberth /(kg/TEU) 船型/TEU 航行能耗强度Iisail /(kg/TEU) 停泊能耗强度Iiberth /(kg/TEU) 100 0.643 6 0.421 5 450 0.384 9 0.378 2 150 0.532 7 0.418 7 500 0.377 5 0.395 6 200 0.477 3 0.437 6 600 0.366 5 0.432 0 250 0.444 1 0.465 3 700 0.358 5 0.469 6 300 0.421 9 0.497 4 800 0.352 6 0.508 0 350 0.406 1 0.531 9 900 0.348 0 0.547 0 400 0.394 2 0.567 9 1 000 0.344 3 0.586 3 表 7 情景预测指标设置
Table 7. Setting of scenario prediction indicators
预测指标 BAU LC 吞吐量 取组合模型预测值 同BAU 集疏运结构 铁水联运:2020—2025年,货运量年均增长15%;2025—2060年,年均增长10%。
水水中转:到2025年,水水中转比例提升至48%,2025年后,水水中转比例每年提升0.2%铁水联运:2020—2025年,货运量年均增长18%,2025—2060年,年均增长12%
水水中转:同BAU集卡电动化率 内集卡:2060年电动化率达到100%
外集卡[28]:2060年电动化率达到20%内集卡:2035年电动化率达到100%
外集卡[29]:2060年电动化率达到40%岸电利用率 2060年岸电利用率达到100% 2035年岸电利用率达到100% 船舶航行碳强度[29] 同基准年 年均下降1.5%* 能耗强度(不含航行) 同基准年 年均下降1%* 电力碳排放因子[30] 到2060年降至0.063 7 kg/kWh 同BAU 注:“*”为以2020年为基准年。 表 8 港口碳中和实现策略
Table 8. Strategies for carbon neutrality for ports
减排措施 减排效果/万t 对应的碳中和实现策略 航行排放控制 19 近中期推广LNG或混合动力船的应用,并加强电动、氢氨动力等船舶的研发,中远期实现新能源船舶的较大规模应用。 港口设备能效提升 17 推动节能技术研发、自动化港口建设等,从硬件上提高港口能效;通过多资源协同调度、智能优化算法等提高港口运行效率。 港口能源结构优化 14.4 提高岸电使用率,逐步淘汰柴油驱动的港机和集卡,推动电力、氢燃料等在港口的应用。 运输结构优化 1.1 提高铁水、水水联运分担率,形成公路、水路、铁路等多种运输方式有效衔接的综合港口集疏运体系。 政策保障与其他措施 为氢、氨等燃料在船舶上的应用提供政策保障。尝试利用碳税、碳交易等市场机制推动港口碳减排。通过负排放技术实现完全意义上的碳中和。 -
[1] 冯宏琳, 张艺, 韩兆星, 等. 长江干线水运量和承载能力研究[J]. 水运工程, 2020(4): 70-73.FENG H L, ZHANG Y, HAN Z X, et al. Research on water transport capacity and carrying capacity of the Yangtze river main line[J]. Water Transport Engineering, 2020(4): 70-73 (in Chinese) [2] 李海波. 港口碳达峰碳中和实现路径[J]. 中国港口, 2022 (2): 5-9.LI H B. The path to peak carbon emissions and carbon neutrality in ports[J] Chinese Ports, 2022(2): 5-9. (in Chinese) [3] SORTE S, RODRIGUES V, LOURENÇO R, et al. Emission inventory for harbour-related activities: comparison of two distinct bottom-up methodologies[J]. Air Quality, Atmosphere & Health, 2021, 14(6): 831-842. [4] JALKANEN J P, BRINK A, KALLI J, et al. A modelling system for the exhaust emissions of marine traffic and its application in the Baltic Sea area[J]. Atmospheric Chemistry and Physics, 2009, 9(23): 9209-9223. doi: 10.5194/acp-9-9209-2009 [5] GOLDSWORTHY L, GOLDSWORTHY B. Modelling of ship engine exhaust emissions in ports and extensive coastal waters based on terrestrial AIS data: an Australian case study[J]. Environmental Modelling & Software, 2015, 63: 45-60. [6] 牟军敏, 龚帅, 陈曦. 基于仿真数据的内河水网船舶排放清单[J]. 中国航海, 2017, 40(3): 98-102.MOU J M, GONG S, CHEN X. Emission inventory of inland waterway vessels based on simulation data[J]. China Navigation, 2017, 40(3): 98-102. [7] SIM J. A carbon emission evaluation model for a container terminal[J]. Journal of Cleaner Production, 2018, 186: 526-533. [8] 赵瑞嘉, 谢燕, 宿博涵, 等. 集装箱港口碳排放量及碳达峰时间测算方法[J]. 大连海事大学学报, 2021, 47(4): 56-64.ZHAO R J, XIE Y, SU B H, et al. Carbon emission and carbon peak time calculation method of container port[J]. Journal of Dalian Maritime University, 2021, 47(4): 56-64. (in Chinese) [9] PENG Y, LI X D, WANG W Y, et al. A simulation-based research on carbon emission mitigation strategies for green container terminals[J]. Ocean Engineering, 2018, 163: 288-298. [10] WANG H, OU X, ZHANG X. Mode, technology, energy consumption, and resulting CO2 emissions in China's transport sector up to 2050[J]. Energy Policy, 2017, 109: 719-733. [11] GUO M, MENG J. Exploring the driving factors of carbon dioxide emission from transport sector in Beijing-Tianjin-Hebei region[J]. Journal of Cleaner Production, 2019, 226: 692-705. [12] LIU M, ZHANG X, ZHANG M, et al. Influencing factors of carbon emissions in transportation industry based on CD function and LMDI decomposition model: China as an example[J]. Environmental Impact Assessment Review, 2021, 90: 106623. [13] 唐国磊, 秦明, 赵晓艺, 等. 集卡调度方式对集装箱港区碳排放的影响[J]. 水运工程, 2019(6): 46-51, 62.TANG G L, QIN M, ZHAO X Y, et al. Effects of container trucks scheduling modes on carbon emission in container terminal[J]. Port & Waterway Engineering, 2019(6): 46-51. (in Chinese) [14] YANG Y C, CHANG W M. Impacts of electric rubber-tired gantries on green port performance[J]. Research in Transportation Business & Management, 2013(8): 67-76. [15] SCIBERRAS E A, ZAHAWI B, ATKINSON D J. Reducing shipboard emissions - assessment of the role of electrical technologies[J]. Transportation Research Part D: Transport and Environment, 2017, 51: 227-239. [16] SCHIPPER L, MARIE C. Transportation and CO2 emissions: flexing the link: a path for the World Bank[R]. Washington, D. C. Environment Department, The Word Bank, 1999. [17] 陶学宗, 吴琴, 尹传忠. 国际集装箱内陆段铁路运输链碳排放量估算[J]. 交通运输系统工程与信息, 2018, 18(2): 20-26.TAO X Z, WU Q, YIN C Z. Estimation of carbon emissions from the international inland container railway transport chain[J]. Transportation System Engineering and Information, 2018, 18(2): 20-26. (in Chinese) [18] 肇晓楠, 谢新连, 赵瑞嘉. 基于滑动窗口动态输入LSTM网络的铁路运输系统碳排放量预测方法[J]. 交通信息与安全, 2023, 41(1): 169-178. doi: 10.3963/j.jssn.1674-4861.2023.01.018ZHAO X N, XIE X L, ZHAO R J. Prediction method of carbon emissions in railway transportation system based on sliding window dynamic input LSTM network[J]. Journal of Transport Information and Safety, 2023, 41(1): 169-178. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.01.018 [19] 中华人民共和国交通运输部. 水运工程节能设计规范: JTS 150—2007[S]. 北京: 人民交通出版社, 2007.Ministry of Transport of the People's Republic of China. Code for energy conservation design of water transport engineering: JTS 150-2007[S]. Beijing: People's Communications Press, 2006. (in Chinese) [20] 国家市场监督管理总局、中国国家标准化管理委员会. 港口设备能源消耗评价方法第5部分: 港口牵引车: GB/T 36410. 5—2018[S]. 北京: 中国标准出版社, 2018.State Market Regulatory Administration, Standardization Administration of the People's Republic of China. Energy consumption evaluation methods of port equipment-part 5: port tractor: GB/T 36410. 5—2018[S]. Beijing: Standards Press of China, 2019. (in Chinese) [21] LEE H, PHAM H T, CHEN M, et al. Bottom-up approach ship emission inventory in port of incheon based on VTS data[J]. Journal of Advanced Transportation, 2021, 2021: 1-16. [22] ABRAMOWSKI T, CEPOWSKI T, ZVOLENSKÝ P. Determination of regression formulas for key design characteristics of container ships at preliminary design stage[J]. New Trends in Production Engineering, 2018, 1(1): 247-257. [23] 中华人民共和国交通运输部. 川江及三峡库区运输船舶标准船型主尺度系列(2010年修订版)[S]. 北京: 人民交通出版社, 2010.Ministry of Transport of the People's Republic of China. Main dimension series of standard ship types for transport ships in the Chuanjiang river and the Three Gorges Reservoir Area(revised in 2010)[S]. Beijing: People's Communications Press, 2006. (in Chinese) [24] 曹亚丽. 典型区域船舶及港区大气污染物排放清单及特征研究[D]. 上海: 上海大学, 2020.CAO Y L. Study on emission inventory and characteristics of air pollutants from ships and port areas in typical areas[D]. Shanghai: Shanghai University, 2020. (in Chinese) [25] NG S, LOH C, LIN C, et al. Policy change driven by anAIS-assisted marine emission inventory in Hong Kong and the pearl river delta[J]. Atmospheric Environment, 2013, 76: 102-112. [26] IPCC. 2006 IPCC guidelines for national greenhouse gas inventories[M]. Kanagawa: The Institute for Global Environmental Strategies, 2006. [27] Marine Environment Protection Committee. Initial IMO strategy on reduction of GHG emissions from ships[S]. London: IMO, 2018. [28] 黄志辉, 纪亮, 尹洁, 等. 中国道路交通二氧化碳排放达峰路径研究[J]. 环境科学研究, 2022, 35(2): 385-393.HUANG Z H, JI L, YIN J, et al. Peak pathway of China's road traffic carbon emissions[J]. Research of Environmental Sciences, 2022, 35(2): 385-393. (in Chinese) [29] 张爽, 苑海超, 孙德平. IMO第四次温室气体研究报告要点解读[J]. 中国船检, 2020(9): 44-50.ZHANG S, YUAN H C, SUN D P. Key points of IMO's fourth greenhouse gas research report[J]. China Ship Survey, 2020(9): 44-50. (in Chinese) [30] 舒印彪, 张丽英, 张运洲, 等. 我国电力碳达峰、碳中和路径研究[J]. 中国工程科学, 2021, 23(6): 1-14.SHU Y B, ZHANG L Y, ZHANG Y Z, et al. Carbon peak and carbon neutrality path for China's power industry[J]. Strategic Study of CAE, 2021, 23(6): 1-14. (in Chinese)