Volume 39 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
XU Qing, WANG Jiawei, WANG Jianqiang, LI Keqiang, GAO Bolin. A Performance Analysis of Mixed Platoon Control under Communication Delay[J]. Journal of Transport Information and Safety, 2021, 39(1): 128-136. doi: 10.3963/j.jssn.1674-4861.2021.01.015
Citation: XU Qing, WANG Jiawei, WANG Jianqiang, LI Keqiang, GAO Bolin. A Performance Analysis of Mixed Platoon Control under Communication Delay[J]. Journal of Transport Information and Safety, 2021, 39(1): 128-136. doi: 10.3963/j.jssn.1674-4861.2021.01.015

A Performance Analysis of Mixed Platoon Control under Communication Delay

doi: 10.3963/j.jssn.1674-4861.2021.01.015
  • Received Date: 2020-10-25
  • Publish Date: 2021-02-28
  • Based on technologies of automatic control and wireless communication, e.g., vehicle-to-vehicle(V2V)communication, intelligent and connected vehicles(ICVs)are believed to improve traffic performance significantly. This paper investigates the performance of mixed platoon systems consisting of ICVs, adopting cooperative adaptive cruise control(CACC), and human-driven vehicles(HDVs)under the influences of communication delay in vehicular networks. From microscopic car-following behaviors, the minimum time headway for string stability is obtained based on the frequency-domain transfer function and increases as time delay grows up, verified by numerical calculation. Large-scale traffic simulations under multiple penetration rates are conducted from traffic shockwaves, with three cases under consideration, including CACC without delay, CACC with delay, and adaptive cruise control(ACC), which degrades from CACC at an extensively considerable delay. Given the same headway for the three cases, extensive simulation results show that CACC without delay or with a communication delay of 1 s can reduce traffic perturbations and dampen traffic shockwaves, with no evident performance gaps. By contrast, ACC achieves a much worse performance compared to CACC.

     

  • loading
  • [1]
    TREIBER M, KESTING A. Traffic flow dynamics: data, models and simulation[M]. Berlin: Springer, 2013.
    [2]
    SUGIYAMA Y, FUKUI M, KIKUCHI M, et al. Traffic jams without bottlenecks-experimental evidence for the physical mechanism of the formation of a jam[J]. New Journal of Physics, 2008, 10(3): 033001. doi: 10.1088/1367-2630/10/3/033001
    [3]
    李克强, 戴一凡, 李升波, 等. 智能网联汽车(ICV)技术的发展现状及趋势[J]. 汽车安全与节能学报, 2017, 8(1): 1-14. doi: 10.3969/j.issn.1674-8484.2017.01.001

    LI Keqiang, DAI Yifan, LI Shengbo, et al. State-of-the-art and technical trends of intelligent and connected vehicles[J]. Journal of Automotive Safety and Energy, 2017, 8(1): 1-14. (in Chinese) doi: 10.3969/j.issn.1674-8484.2017.01.001
    [4]
    LI S E, ZHENG Y, LI K, et al. Dynamical modeling and distributed control of connected and automated vehicles: challenges and opportunities[J]. IEEE Intelligent Transportation Systems Magazine, 2017, 9(3): 46-58. doi: 10.1109/MITS.2017.2709781
    [5]
    STERN R E, CUI S, Delle Monache M L, et al. Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments[J]. Transportation Research Part C: Emerging Technologies, 2018, 89: 205-221. doi: 10.1016/j.trc.2018.02.005
    [6]
    TALEBPOUR A, MAHMASSANI H S. Influence of connected and autonomous vehicles on traffic flow stability and throughput[J]. Transportation Research Part C: Emerging Technologies, 2016(71): 143-163. http://smartsearch.nstl.gov.cn/paper_detail.html?id=8f54faf4ca968a5b80ae02ed02373f6d
    [7]
    SCHAKEL W J, VAN AREM B, NETTEN B D. Effects of cooperative adaptive cruise control on traffic flow stability[C]. 13th International IEEE Conference on Intelligent Transportation Systems, Funchal, Portugal: IEEE, 2010.
    [8]
    GUÚRIAU M, BILLOT R, El FAOUZI N E, et al. How to assess the benefits of connected vehicles? A simulation framework for the design of cooperative traffic management strategies[J]. Transportation Research Part C: Emerging Technologies, 2016 (67): 266-279. http://smartsearch.nstl.gov.cn/paper_detail.html?id=4fb55e68eb689b922c495d007bc1e371
    [9]
    秦严严, 王昊, 王炜, 等. 不同CACC渗透率条件下的混合交通流稳定性分析[J]. 交通运输系统工程与信息, 2017, 17(4): 63-69+104.

    QIN Yanyan, WANG Hao, WANG Wei, et al. Mixed traffic flow string stability analysis for different cacc penetration ranges[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(4): 63-69 + 104. (in Chinese)
    [10]
    SHLADOVER S, SU D, LU X Y. Impacts of cooperative adaptive cruise control on freeway traffic flow[J]. Transportation Research Record: Journal of the Transportation Research Board, 2012(2324): 63-70. http://www.researchgate.net/publication/266391703_Impacts_of_Cooperative_Adaptive_Cruise_Control_on_Freeway_Traffic_Flow_Impacts_of_Cooperative_Adaptive_Cruise_Control_on_Freeway_Traffic_Flow
    [11]
    ZHENG Y, WANG J, LI K. Smoothing traffic flow via control of autonomous vehicles[J]. IEEE Internet of Things Journal, 2020, 7(5): 3882-3896. doi: 10.1109/JIOT.2020.2966506
    [12]
    WANG J, ZHENG Y, XU Q, et al. Controllability analysis and optimal control of mixed traffic flow with human-driven and autonomous vehicles[J/OL]. (2020-06-29)[2021-01-01]. https://ieeexplore.ieee.org/abstract/document/9127876.
    [13]
    DEY K C, YAN L, WANG X, et al. A review of communication, driver characteristics, and controls aspects of cooperative adaptive cruise control(CACC)[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 17(2): 491-509. http://ieeexplore.ieee.org/document/7314936/references
    [14]
    郑洋. 基于四元素构架的车辆队列动力学建模与分布式控制[D]. 北京: 清华大学, 2015.

    ZHENG Yang. Dynamic modeling and distributed control of vehicular platoon under the four-component framework[D]. Beijing: Tsinghua University, 2015. (in Chinese)
    [15]
    PLOEG J, SCHEEPERS B T M, VAN NUNEN E, et al. Design and experimental evaluation of cooperative adaptive cruise control[C]. 14th International IEEE Conference on Intelligent Transportation Systems, Washington, DC, USA: IEEE, 2011.
    [16]
    NAUS G J L, VUGTS R P A, PLOEG J, et al. String-stable CACC design and experimental validation: A frequency-domain approach[J]. IEEE Transactions on Vehicular Technology, 2010, 59(9): 4268-4279. doi: 10.1109/TVT.2010.2076320
    [17]
    ÖNCÜ S, PLOEG J, VAN DE WOUW N, et al. Cooperative adaptive cruise control: Network-aware analysis of string stability[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(4): 1527-1537. doi: 10.1109/TITS.2014.2302816
    [18]
    KESTING A, TREIBER M, HELBING D. Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2010, 368(1928): 4585-4605. doi: 10.1098/rsta.2010.0084
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (1054) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return