Volume 39 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
CHEN Jialiang, HU Zhaozheng, LI Fei. An Estimation Method of Traffic Flow State Based on Matching of Temporal-spatial Feature Sequences[J]. Journal of Transport Information and Safety, 2021, 39(3): 68-76, 120. doi: 10.3963/j.jssn.1674-4861.2021.03.009
Citation: CHEN Jialiang, HU Zhaozheng, LI Fei. An Estimation Method of Traffic Flow State Based on Matching of Temporal-spatial Feature Sequences[J]. Journal of Transport Information and Safety, 2021, 39(3): 68-76, 120. doi: 10.3963/j.jssn.1674-4861.2021.03.009

An Estimation Method of Traffic Flow State Based on Matching of Temporal-spatial Feature Sequences

doi: 10.3963/j.jssn.1674-4861.2021.03.009
  • Received Date: 2021-01-25
  • An estimation model of the traffic flow state based on matching of temporal-spatial feature sequences is studied to better estimate the traffic flow state for the road section without a traffic flow detector and improve the estimation accuracy.The model firstly uses the calculation method of the traffic-operation index to preset the traffic-flow state of the urban-road section with traffic flow data.Various factors affecting the operating conditions of urban roads are analyzed, with the introduction of the characteristics of time and space multi-dimensional parameters such as traffic flow parameters, road parameters, and road network topology parameters.The temporal and spatial characteristics of traffic flow form by extracting 3 dimensions, 8 features, and 1 additional dimension, thus constructing the DNA feature sequence of urban-road traffic flow.After normalizing the value of each feature, the WH-KNN matching method is used to obtain the traffic-flow state closest to the road section to be estimated in the whole road network.The experiment selects the data of one week in road sections 10468, 10483, and 8816 of Wuhan Zhonghuan Expressway.Assuming that the road section data is missing, the traffic flow state is estimated by the method described above, and the estimated results are compared with the original data results.The results shows that the model can obtain the traffic flow state of the road section without detection data as well as maintain the accuracy rate of the state estimation result above 88%. The misjudgment is within a performance-index level.

     

  • loading
  • [1]
    吕北岳. 基于浮动车的深圳市道路交通运行评价研究[D]. 武汉: 武汉大学, 2013.

    LYU Beiyue. Research on evaluation of road traffic operations based on floating car for Shenzhen[D]. Wuhan: Wuhan University, 2013. (in Chinese)
    [2]
    WANG Jingfeng, WANG Chao, LYU Jiarun, et al. Modeling travel time reliability of road network considering connected vehicle guidance characteristics indexes[J]. Journal of Advanced Transportation, 2017(2017): 1-9. http://www.researchgate.net/publication/315922627_Modeling_Travel_Time_Reliability_of_Road_Network_Considering_Connected_Vehicle_Guidance_Characteristics_Indexes
    [3]
    韦伟, 毛保华, 陈绍宽, 等. 基于时空自相关的道路交通状态聚类方法[J]. 交通运输系统工程与信息, 2016, 16(2): 57-63. doi: 10.3969/j.issn.1009-6744.2016.02.011

    WEI Wei, MAO Baohua, CHEN Shaokuan, et al. Urban traffic status clustering method based on spatio-temporal autocorrelation[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(2): 57-63. (in Chinese) doi: 10.3969/j.issn.1009-6744.2016.02.011
    [4]
    张婧. 城市道路交通拥堵判别、疏导与仿真[D]. 南京: 东南大学, 2016.

    ZHANG Jing. The study on identification, dispersion and simulation of urban traffic congestion[D]. Nanjing: Southeast university, 2016. (in Chinese)
    [5]
    庄广新. 基于多源检测器的交通流数据融合方法研究[D]. 北京: 北京交通大学, 2017.

    ZHUANG Guangxin. Research on the traffic information fusion with the multi-source detectors[D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese)
    [6]
    WANG Xiangxue, XU Lunhui, CHEN Kaixun. Data-driven short-term forecasting for urban road network traffic based on data processing and LSTM-RNN[J]. Arabian Journal for Science and Engineering, 2019, 44(4): 3043-3060. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204112953625.html
    [7]
    崔玮. 高速路网交通状态判别与预测的研究[D]. 淄博: 山东理工大学, 2016.

    CUI Wei. Research on traffic state identification and prediction of highway network[D]. Zibo: Shandong University of Technology, 2016. (in Chinese)
    [8]
    XU Dongwei, WANG Yongdong, JIA Limin, et al. Real-time road traffic states measurement based on Kernel-KNN matching of regional traffic attractors[J]. Measurement, 2016(94): 862-872. http://www.sciencedirect.com/science/article/pii/S0263224116304985
    [9]
    YANG Senyan, WU Jianping, QI Geqi, et al. Analysis of traffic state variation patterns for urban road network based on spectral clustering[J]. Advances in Mechanical Engineering, 2017(9): 1624-1639. http://www.researchgate.net/publication/319975367_Analysis_of_traffic_state_variation_patterns_for_urban_road_network_based_on_spectral_clustering
    [10]
    商强, 林赐云, 杨兆升, 等. 基于谱聚类与RS-KNN的城市快速路交通状态判别[J]. 华南理工大学学报(自然科学版), 2017, 45(6): 52-58. doi: 10.3969/j.issn.1000-565X.2017.06.009

    SHANG Qiang, LIN Ciyun, YANG Zhaosheng, et al. Traffic state identification for urban expressway based on spectral clustering and RS-KNN[J]. Journal of South China University of Technology(Natural Science Edition), 2017, 45(6): 52-58. (in Chinese) doi: 10.3969/j.issn.1000-565X.2017.06.009
    [11]
    LIN Xiaohui. A road Network traffic state identification method based on macroscopic fundamental diagram and spectral clustering and support vector machine[J]. Mathematical Problems in Engineering, 2019(4): 1-10. http://www.researchgate.net/publication/332562853_A_Road_Network_Traffic_State_Identification_Method_Based_on_Macroscopic_Fundamental_Diagram_and_Spectral_Clustering_and_Support_Vector_Machine
    [12]
    DAI Yihong, LU Weike, HUANG Hao, et al. Threshold division of urban road network traffic state based on macroscopic fundamental diagram and k-means clustering[C]. 2019 International Conference on Transportation Engineering, Chengdu: Southwest Jiaotong University, 2020.
    [13]
    马勇. 城市快速路实时交通状态估计方法研究[D]. 北京: 北京工业大学, 2014.

    MA Yong. Real-time traffic state estimation method for urban expressway[D]. Beijing: Beijing University of Technology, 2014. (in Chinese)
    [14]
    ZHAO Shuxu, ZHANG Baohua. Traffic flow prediction of urban road network based on LSTM-RF model[J]. Journal of Measurement Science and Instrumentation, 2020, 11(2): 135-142.
    [15]
    黄振盛, 汪玉美, 韩江洪, 等. 基于MLS-SVM和时空特性的短时交通流量预测方法[J]. 合肥工业大学学报(自然科学版), 2020, 43(1): 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE202001010.htm

    HUANG Zhensheng, WANG Yumei, HAN Jianhong, et al. Short-term urban traffic flow prediction based on MLS-SVMand spatiotemporal features[J]. Journal of Hefei University of Technology(Natural Science), 2020, 43(1): 57-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE202001010.htm
    [16]
    唐智慧, 郑伟皓, 董维, 等. 基于交互式BP-UKF模型的短时交通流预测方法[J]. 公路交通科技, 2019, 36(4): 117-124+134. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201904017.htm

    TANG Zhihui, ZHENG Weihao, DONG Wei, et al. A method for predicting short-term traffic flow based on interactive IMM-BP-UKF model[J]. Journal of Highway and Transportation Research and Development, 2019, 36(4): 117-124+134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201904017.htm
    [17]
    常丽君, 郑黎黎, 杨帆. 基于(SAGA-FCM)-PNN的交通状态判别方法研究[J]. 交通信息与安全, 2019, 37(2): 120-127. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201902017.htm

    CHANG Lijun, ZHENG Lili, YANG Fan. A method of discrimination for traffic state based on(SAGA-FCM)-PNN[J]. Journal of Transport Information and Safety, 2019, 37(2): 120-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201902017.htm
    [18]
    FOWE A J, CHAN Y P. A microstate spatial-inference model for network-traffic estimation[J]. Transportation Research Part C: Emerging Technologies, 2013(36): 245-260. http://www.sciencedirect.com/science/article/pii/S0968090X13001757
    [19]
    张婧, 任刚. 城市道路交通拥堵状态时空相关性分析[J]. 交通运输系统工程与信息, 2015, 15(2): 175-181. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201502027.htm

    ZHANG Jing, REN Gang. Spatio-temporal correlation analysis of urban traffic congestion diffusion[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(2): 175-181. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201502027.htm
    [20]
    MA Shiyong, AN Shi, YU Hang. Urban traffic congestion discrimination algorithm based on the ordered decision theory[J]. Advances in Information Sciences & Service Sciences, 2012, 4(23): 814-820. http://www.researchgate.net/publication/276004646_Urban_Traffic_Congestion_Discrimination_Algorithm_Based_on_the_Ordered_Decision_Theory
    [21]
    LIU Zhe, ZHOU Shunbo, SUO Chuanzhe, et al. LPD-Net: 3D point cloud learning for large-scale place recognition and environment analysis[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea: IEEE, 2019.
    [22]
    刘国忠, 胡钊政. 基于SURF和ORB全局特征的快速闭环检测[J]. 机器人, 2017, 39(1): 36-45. https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201701005.htm

    LIU Guozhong, HU Zhaozheng. Fast loop closure detection based on holistic features from SURF and ORB[J]. Robot, 2017, 39(1): 36-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201701005.htm
    [23]
    张巧. 混合交通流条件下城市路段BPR函数参数标定研究[D]. 长沙: 中南大学, 2013.

    ZHANG Qiao. Calibrating BPR function under urban mixed traffic flow condition[D]. Changsha: Central South University, 2013. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article views (535) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return