Volume 39 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
LIANG Quan, WENG Jiancheng, HU Juanjuan, HAN Bing. Travel Destination Prediction of Public Transport Commuters by Integrating XGBoost Algorithm and Graph Adjustment Method[J]. Journal of Transport Information and Safety, 2021, 39(4): 68-76. doi: 10.3963/j.jssn.1674-4861.2021.04.009
Citation: LIANG Quan, WENG Jiancheng, HU Juanjuan, HAN Bing. Travel Destination Prediction of Public Transport Commuters by Integrating XGBoost Algorithm and Graph Adjustment Method[J]. Journal of Transport Information and Safety, 2021, 39(4): 68-76. doi: 10.3963/j.jssn.1674-4861.2021.04.009

Travel Destination Prediction of Public Transport Commuters by Integrating XGBoost Algorithm and Graph Adjustment Method

doi: 10.3963/j.jssn.1674-4861.2021.04.009
  • Received Date: 2020-07-04
  • Accurate grasp of the destinations of public transport commuters can clarify travel needs of passengers and improve public transport service. The data of public transport in one-month and the revealed preference(RP)survey in Beijing are collected. The travel chain of 563 public transport commuters is obtained through the association analysis of smart card numbers, transaction data, and network data. A total of 302 public transport commuters with high, medium, and low public travel stability are identified by association rules. The XGBoost integrated learning algorithm is introduced to develop a prediction model of the next travel destination for individual public transport commuters with different travel stabilities. The factors significantly influencing travel destinations are input variables. The following trip destination is the output variable. The prediction model is constructed by adjusting and optimizing parameters repeatedly. The destination prediction accuracy of passengers with high, medium, and low stability is 90%, 66.67%, and 50%, respectively. Besides, the transfer probability of the graph is utilized to revise the predicted results. The prediction accuracy is improved to 91.2%, 83.21%, and 69.5%. The transfer probability of the graph can improve the prediction accuracy of the passengers' travel destinations with medium and low stability. The destination data from the bus metropolitan system is used to compare and verify the aggregation results of destination prediction for the next trip.The absolute percentage error of the predicted value and the true value-changing gradient is less than 10%. Thus, the method of travel destination prediction by combining XGBoost and travel graph correction based on dividing public transport commuters' travel stability has high accuracy.

     

  • loading
  • [1]
    北京交通发展研究院. 2019年北京市交通发展年度报告[R]. 北京: 北京交通发展研究院, 2019.

    Beijing Transport Institute. 2019 Beijing transport annual report[R]. Beijing: Beijing Transport Institute, 2019. (in Chinese)
    [2]
    呙娟. 基于公交数据的乘客出行特征分析[D]. 广州: 华南理工大学, 2016.

    GUO Juan. The travel characteristics analysis of passengers based on the bus data[D]. Guangzhou: South China University of Technology, 2016. (in Chinese)
    [3]
    NEVEN A, BRAEKERS K, DECLERCQ K, et al. Assessing the impact of different policy decisions on the resource requirements of a demand responsive transport system for persons with disabilities[J]. Transport Policy, 2015(44): 48-57. http://www.researchgate.net/profile/An_Neven/publication/280083315_Assessing_the_impact_of_different_policy_decisions_on_the_resource_requirements_of_a_Demand_Responsive_Transport_system_for_persons_with_disabilities/links/55a74d1b08ae51639c577186.pdf
    [4]
    [5]
    CASTIGLIONE J, FREEDMAN J. A systematic investigation of variability due to random simulation error in an activity-based micro simulation forecasting model[C]. 82ndTransportation Research Board Annual Meeting, Washington, D. C., USA: Transportation Research Board, 2009.
    [6]
    郑劲松. 基于数据仓库的城市轨道交通客流分析系统研究[D]. 长沙: 中南大学, 2009.

    ZHENG Jingsong. Research of urban rail transit passenger flow analysis system based on data warehouse[D]. Changsha: Central South University, 2009. (in Chinese)
    [7]
    靳佳. 基于IC卡的北京市公交出行特征分析[D]. 北京: 首都师范大学, 2013.

    JIN Jia. An analysis of the characteristics of Beijing's public transport trips based on IC cards[D]. Beijing: Capital Normal University, 2013. (in Chinese)
    [8]
    郭婕. 公交IC卡通勤乘客OD确定方法研究[D]. 南京: 东南大学, 2006.

    GUO Jie. Research on the method of determining the OD of passengers in bus IC card[D]. Nanjing: Southeast University, 2006. (in Chinese)
    [9]
    VELDHUISEN J, TIMMERMANS H, PONE L. Micro-simulation of activity-travel patterns and traffic flows: validation tests and an investigation of monte carlo error[C]. 79th Transportation Research Board Annual Meeting, Washington, D. C., USA: Transportation Research Board, 2000.
    [10]
    沈金星, 李洋, 王逸戍. 居民通勤出行的定制公交需求特征研究[J]. 物流工程与管理, 2017, 39(9): 133-134. doi: 10.3969/j.issn.1674-4993.2017.09.046

    SHEN Jinxing, LI Yang, WANG Yishu. Study on the characteristics of customized bus demand for commuter trip[J]. Logistics Engineering and Management, 2017, 39(9): 133-134. (in Chinese) doi: 10.3969/j.issn.1674-4993.2017.09.046
    [11]
    TAO L, CEDER A A. Analysis of a new public-transport service concept: customized bus in China[J]. Transport Policy, 2015(39): 63-76. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0967070X15000256&originContentFamily=serial&_origin=article&_ts=1495763187&md5=0cebc5b3c021ed7e8059da16041da5d2
    [12]
    QUAN H, PHONG H N, TOBIASÅ, et al. Implementation of a flow map demonstrator for analyzing commuting and migration flow statistics data[J]. Procedia Social and Behavioral Sciences, 2011(21): 157-166. http://pdfs.semanticscholar.org/4514/1160d6ecec5f21aef39ed4ff61dc639f2c5b.pdf
    [13]
    梁泉, 翁剑成, 周伟, 等. 基于关联规则的公共交通通勤稳定性人群辨识[J]. 吉林大学学报(工学版), 2019, 49(5): 1484-1491. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201905013.htm

    LIANG Quan, WENG Jiancheng, ZHOU Wei, et al. Stability identification of public transport commute passengers based on association rules[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1484-1491. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201905013.htm
    [14]
    梁泉, 翁剑成, 周伟, 等. 面向个体的分类型公交通勤行为影响因素研究[J]. 武汉理工大学学报(交通科学与工程版), 2019, 43(5): 855-859. doi: 10.3963/j.issn.2095-3844.2019.05.013

    LIANG Quan, WENG Jiancheng, ZHOU Wei, et al. Study on influencing factors of individual-oriented commuting behavior with different types of public transportation[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2019, 43(5): 855-859. (in Chinese) doi: 10.3963/j.issn.2095-3844.2019.05.013
    [15]
    万志超. 基于XGBoost的不平衡分类方法研究[D]. 合肥: 安徽大学, 2018.

    WAN Zhichao. Research on imbalanced classification method based on XGBoost[D]. Hefei: Anhui University, 2018. (in Chinese)
    [16]
    施国良, 景志刚, 范丽伟. 基于Lasso和Xgboost的油价预测研究[J]. 工业技术经济, 2018, 37(7): 31-37. doi: 10.3969/j.issn.1004-910X.2018.07.004

    SHI Guoliang, JIANG Zhigang, FAN Liwei, et al. Research on the Original Oil Price Prediction Based on Lasso-Xgboost Combination Method[J]. Journal of Industrial Technological Economics, 2018, 37(7): 31-37. (in Chinese) doi: 10.3969/j.issn.1004-910X.2018.07.004
    [17]
    CHEN T, GUESTRIN C. Xgboost: A scalable tree boosting system[C]. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco: ACMDigital Library, 2016.
    [18]
    刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3): 582-600. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201603009.htm

    LIU Qiao, LI Yang, DUAN Hong, et al. Knowledge graph construction techniques[J]. Journal of Computer Research and Development, 2016, 53(3): 582-600. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201603009.htm
    [19]
    梁泉. 基于个体出行图谱的公共交通通勤出行行为预测方法研究[D]. 北京: 北京工业大学, 2019.

    LIANG Quan. Research on travel behavior forecasting method of public transport commuters based on individual travel graphs[D]. Beijing: Beijing University of Technology, 2019. (in Chinese)
    [20]
    翁剑成, 王昌, 王月玥, 等. 基于个体出行数据的公共交通出行链提取方法[J]. 交通运输系统工程与信息, 2017, 17(3): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201703011.htm

    WENG Jiancheng, WANG Chang, WANG Yueyue, et al. Extraction method of public transit trip chains based on the individual riders'data[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(3): 67-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201703011.htm
    [21]
    钟颖, 邵毅明, 吴文文, 等. 基于XGBoost的短时交通流预测模型[J]. 科学技术与工程, 2019, 19(30): 337-342. doi: 10.3969/j.issn.1671-1815.2019.30.050

    ZHONG Ying, SHAO Yiming, WU Wenwen, et al. Short-term traffic flow prediction model based on XGBoost[J]. Science Technology and Engineering, 2019, 19(30): 337-342. (in Chinese) doi: 10.3969/j.issn.1671-1815.2019.30.050
    [22]
    MITCHELL R, FRANK E. Accelerating the XGBoost algorithm using GPU computing[D]. Waikato, New Zealand: University of Waikato, 2017.
    [23]
    LIANG Quan, WENG Jiancheng, ZHOU Wei, et al. Individual travel behavior modeling of public transport passenger based on graph construction[J]. Journal of Advanced Transportation, 2018(2018): 1-13.
    [24]
    荣建, 翁剑成. 基于多源数据的公共交通通勤特征提取技术[R]. 北京: 北京工业大学, 2014.

    RONG Jian, WENG Jiancheng. Commuter feature extraction technology of public transport based on multi-source data[R]. Beijing: Beijing University of Technology, 2014. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(10)

    Article Metrics

    Article views (874) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return