Volume 39 Issue 5
Nov.  2021
Turn off MathJax
Article Contents
LUO Shulin, ZHANG Cunbao, ZHANG Taiwen, CAO Yu. Active Traffic Guidance Method for Recurrent Congestion Points[J]. Journal of Transport Information and Safety, 2021, 39(5): 68-72. doi: 10.3963/j.jssn.1674-4861.2021.05.009
Citation: LUO Shulin, ZHANG Cunbao, ZHANG Taiwen, CAO Yu. Active Traffic Guidance Method for Recurrent Congestion Points[J]. Journal of Transport Information and Safety, 2021, 39(5): 68-72. doi: 10.3963/j.jssn.1674-4861.2021.05.009

Active Traffic Guidance Method for Recurrent Congestion Points

doi: 10.3963/j.jssn.1674-4861.2021.05.009
  • Received Date: 2021-05-08
  • Traffic guidance methods based on dynamic user equilibrium and optimal system allocation focus on macro forecasting and adjustment of road network demands. They are difficult to accurately identify related traffic flow, which restricts the guidance effects. An active traffic guidance method based on traceable demand is proposed to control traffic flows and alleviate recurrent congestion. The study following the idea of targeted guidance, analyzes the correlation between vehicle trajectory and traffic flow at frequent congestion points, and uses Kalman filter to make short-term predictions of the associated traffic flow. Furthermore, it is preferable to optimize target traffic flows in combination with indicators such as traffic ratio and path saturation. Meanwhile, based on balanced traffic distribution, the spatio-temporal correlation between the road section and the path traffic flow is used to update the road network traffic state and establish an active induction optimization model with saturation equilibrium as the goal. The simulation results show that, compared with the active induction based on path preference, this method result in a reduction from 30% to 60% in the average delay and the number of stops of vehicles at frequent congestion points, and a reduction from 10% to 15% in the whole road network. The convergence speed and traffic benefit of the model are significantly improved, which verifies the effectiveness of the method in the work.

     

  • loading
  • [1]
    李妍峰, 高自友, 李军. 基于实时交通信息的城市动态网络车辆路径优化问题[J]. 系统工程理论与实践, 2013, 33(7): 1813-1819. doi: 10.3969/j.issn.1000-6788.2013.07.022

    LI Yanfeng, GAO Ziyou, LI Jun. Urban dynamic network vehicle routing optimization based on real-time traffic information[J]. System Engineering Theory and Practice, 2013, 33(7): 1813-1819(in Chinese) doi: 10.3969/j.issn.1000-6788.2013.07.022
    [2]
    邓卫, 李峻利. 高速公路常发性与偶发性交通拥挤的判别[J]. 东南大学学报, 1994(2): 60-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX402.009.htm

    DENG Wei, LI Junli. Discrimination between frequent and occasional traffic congestion on expressway[J]. Journal of Southeast University, 1994(2): 60-65(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX402.009.htm
    [3]
    SUN Huijun, WU Jianjun, MA Dan, et al. Spatial distribution complexities of traffic congestion and bottlenecks in different network topologies[J]. Applied Mathematical Modelling, 2014, 38(2): 496-505. (in Chinese) doi: 10.1016/j.apm.2013.06.027
    [4]
    WEN Huimin, SUN Jianping, ZHANG Xi. Study on traffic congestion patterns of large city in China taking Beijing as an example[J]. Procedia-Social and Behavioral Sciences, 2014(138): 482-491. http://www.sciencedirect.com/science/article/pii/S1877042814041469/pdf?md5=8046434a6e6d6c6c77c6e971355d0124&pid=1-s2.0-S1877042814041469-main.pdf
    [5]
    DEFLORIO F P. Evaluation of a reactive dynamic route guidance strategy[J]. Transportation Research Part C: Emerging Technologies, 2003, 11(5): 375-388. doi: 10.1016/S0968-090X(03)00031-7
    [6]
    ZHANG R, LI Z, FENG C, et al. Traffic routing guidance algorithm based on backpressure with a trade-off between user satisfaction and traffic load[C]. 2012 Vehicular Technology Conference(VTC Fall), Piscataway, NJ, USA: IEEE, 2012.
    [7]
    LIANG Z, WAKAHARA Y. Real-time urban traffic amount prediction models for dynamic route guidance systems[J]. Eurasip Journal on Wireless Communications & Networking, 2014(8): 1018-1030. doi: 10.1186/1687-1499-2014-85
    [8]
    [9]
    FRIESZ T L, KIM T, KWON C, et al. Approximate network loading and dual-time-scale dynamic user equilibrium[J]. Transportation Research Part B: Methodological, 2011, 45(1): 176-207. doi: 10.1016/j.trb.2010.05.003
    [10]
    LONG Jiancheng, CHEN Jiaxu, SZETO W Y, et al. Link-based system optimum dynamic traffic assignment problems with environmental objectives[J]. Transportation Research Part D: Transport & Environment, 2016, 60(6): 56-75. http://www.sciencedirect.com/science/article/pii/S1361920916303248
    [11]
    DABBAS H, FOURATI W, FRIEDRICH B. Using floating car data in route choice modelling-field study[J]. Transportation Research Procedia, 2021(52): 700-707. http://www.sciencedirect.com/science/article/pii/S2352146521001307
    [12]
    BI Y C, LAM W, SUMALEE A, et al. Vulnerability analysis for large-scale and congested road networks with demand uncertainty[J]. Transportation Research Part A: Policy and Practice, 2012, 46(3): 501-516. doi: 10.1016/j.tra.2011.11.018
    [13]
    张宏雨, 寇玮华. 基于消圈算法的拥挤网络流分流研究[J]. 交通运输工程与信息学报, 2017, 15(3): 84-92+99. doi: 10.3969/j.issn.1672-4747.2017.03.012

    ZHANG Hongyu, KOU Weihua. Research on congestion network flow diversion based on circle elimination algorithm[J]. Journal of transportation engineering and information, 2017, 15(3): 84-92+99(in Chinese) doi: 10.3969/j.issn.1672-4747.2017.03.012
    [14]
    韩直, 徐冲聪, 韩嵩乔. 基于短时交通流预测的广域动态交通路径诱导方法[J]. 交通运输系统工程与信息, 2020, 20 (1): 117-123+129. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202001020.htm

    HAN Zhi, XU Chongcong, HAN Songqiao. Wide-area dynamic traffic route guidance method based on short-term traffic flow prediction[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(1): 117-123+129 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202001020.htm
    [15]
    王福建, 龚成宇, 马东方, 等. 采用交通出行量数据的多点联动瓶颈控制方法[J]. 浙江大学学报(工学版), 2017, 51(2): 273-278. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201702007.htm

    WANG Fujian, GONG Chengyu, MA Dongfang, et al. Signal coordination control for traffic bottleneck using OD data[J]. Journal of Zhejiang University(Engineering Science), 2017, 51(2): 273-278(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201702007.htm
    [16]
    杨兆升, 朱中. 基于卡尔曼滤波理论的交通流量实时预测模型[J]. 中国公路学报, 1999, 12(3): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL199903008.htm

    YANG Zhaosheng, ZHU Zhong. A real-time traffic volume prediction model based on the Kalman filtering theory[J]. China Journal of Highway and Transport, 1999, 12(3): 63-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL199903008.htm
    [17]
    黄裕乔. 动态交通诱导信息时空发布策略研究[D]. 北京: 北京交通大学, 2012.

    HUANG Yuqiao. Research on spatio-temporal release strategy of dynamic traffic guidance information[D]. Beijing: Beijing Jiaotong University, 2012(in Chinese)
    [18]
    陈芳, 张卫华, 丁恒, 等. 基于出行者路径选择行为的VMS诱导策略研究[J]. 系统工程理论与实践, 2018, 38(5): 1263-1276. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201805016.htm

    CHEN Fang, ZHANG Weihua, DING Heng, et al. Research on VMS induction strategy based on traveler path selection behavior[J]. Systems Engineering-Theory & Practice, 2018, 38(5): 1263-1276. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201805016.htm
    [19]
    陈彦如, 蒲云. 用遗传算法解决固定需求交通平衡分配问题[J]. 西南交通大学学报, 2000, 35(1): 44-47. doi: 10.3969/j.issn.0258-2724.2000.01.011

    CHEN Yanru, PU Yun. Solving traffic equilibrium assignment problem with genetic algorithm[J]. Journal of Southwest Jiaotong University, 2000, 35(1): 44-47. (in Chinese) doi: 10.3969/j.issn.0258-2724.2000.01.011
    [20]
    杨扬, 姚恩建, 潘龙, 等. 基于GPS数据的出租车路径选择行为研究[J]. 交通运输系统工程与信息, 2015, 15(1): 81-86. doi: 10.3969/j.issn.1009-6744.2015.01.015

    YANG Yang, YAO Enjian, PAN Long, et al. Study on taxi route selection behavior based on GPS data[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(1): 81-86. (in Chinese) doi: 10.3969/j.issn.1009-6744.2015.01.015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (702) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return