Volume 39 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
LYU Tongtong, ZHANG Zhan, LU Linjun, ZHANG Yanmeng. An Analysis of Traffic Accident Severity Based on Mutual-information Bayesian Network[J]. Journal of Transport Information and Safety, 2021, 39(6): 36-43. doi: 10.3963/j.jssn.1674-4861.2021.06.005
Citation: LYU Tongtong, ZHANG Zhan, LU Linjun, ZHANG Yanmeng. An Analysis of Traffic Accident Severity Based on Mutual-information Bayesian Network[J]. Journal of Transport Information and Safety, 2021, 39(6): 36-43. doi: 10.3963/j.jssn.1674-4861.2021.06.005

An Analysis of Traffic Accident Severity Based on Mutual-information Bayesian Network

doi: 10.3963/j.jssn.1674-4861.2021.06.005
  • Received Date: 2021-08-30
    Available Online: 2022-01-12
  • The methods of mutual information and Bayesian network are conducted to develop a model to grasp the factors affecting the severity of accidents in the inter-provincial bus industry. The quantitative interaction between changes in factors and the severity of accidents are analyzed. Given the limitation of the samples' size of the industry and the subjectivity of experts' knowledge of modeling, an improved discrete algorithm is used for data mining.A primary network construction method combining mutual information and cross-validation is proposed. Taking model analysis with 741 inter-provincial bus accidents in Shanghai from 2005 to 2019 as a case study, the results show that the most sensitive influencing factors of accidents are gender, weather, and vehicle type."Female driver""snow, wind, and fog""medium-size bus"account for 13.5%, 8.8%, and 5.7% of the weight of the accidents, respectively. Additionally, drivers' age has little contribution to the misfortune of group death and injury. Bus size has non-monotonic relationships with safety. The probability of more than seven people being injured during 00:00 to05:00 rises by 9%. The factors of season, weather, and time are not directly related to property loss. The generalization ability of the constructed model is better than other comparable models. The average AUC is 0.644 588, and the hit rate reaches 97.3%.

     

  • loading
  • [1]
    宗芳, 于萍, 吴挺, 等. 常规公交风险的SEM与Bayesian Network组合评估方法研究[J]. 交通信息与安全, 2018, 36(4): 22-28. doi: 10.3963/j.issn.1674-4861.2018.04.004

    ZONG Fang, YU Ping, WU Ting, et al. A combination assessment of SEM and Bayesian network for safety risks of regular buses[J]. Journal of Transport Information and Safety, 2018, 36(4): 22-28. (in Chinese). doi: 10.3963/j.issn.1674-4861.2018.04.004
    [2]
    ZHANG Yingyu, LIU Tiezhong, BAI Qingguo, et al. New systems-based method to conduct analysis of road traffic[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2018(54): 96-109. http://smartsearch.nstl.gov.cn/paper_detail.html?id=6afbbfa43f1c8d3f2afbf16954a6af13
    [3]
    SAM E F, DANIELS S, BRIJS K, et al. Modelling public bus/minibus transport accident severity in Ghana[J]. Accident Analysis & Prevention, 2018(119): 114-121. http://www.onacademic.com/detail/journal_1000040409223510_ba95.html
    [4]
    MIYAMA G, FUKUMOTO M, KAMEGAYA R, et al. Risk factors for collisions and near-miss incidents caused by drowsy bus drivers[J] International Journal of Environmental Research and Public Health, 2020, 17(12): 1-11.
    [5]
    陈昭明, 徐文远, 曲悠扬, 等. 基于混合Logit模型的高速公路交通事故严重程度分析[J]. 交通信息与安全, 2019, 37(3): 42-50. doi: 10.3963/j.issn.1674-4861.2019.03.006

    CHEN Zhaoming, XU Wenyuan, QU Youyang, et al. Severity of traffic crashes on freeways based on mixed logit model[J]. Journal of Transport Information and Safety, 2019, 37(3): 42-50. (in Chinese). doi: 10.3963/j.issn.1674-4861.2019.03.006
    [6]
    JIANG Chenming, TAY R, LU Linjun. A skewed logistic model of two-unit bicycle-vehicle hit-and-run crashes[J]. Traffic Injury Prevention, 2021, 22(2): 158-161. doi: 10.1080/15389588.2020.1852224
    [7]
    WANG Xuesong, JIAO Yujun, HUO Junyu, et al. Analysis of safety climate and individual factors affecting bus drivers'crash involvement using a two-level logit model[J]. Accident Analysis & Prevention, 2021(154): 1-10. http://www.sciencedirect.com/science/article/pii/S0001457521001184
    [8]
    GULER M A, ELITOK K, BAYRAM B, et al. The influence of seat structure and passenger weight on the rollover crashworthiness of an intercity coach[J]. International Journal of Crashworthiness, 2007, 12(6): 567-580. doi: 10.1080/13588260701485297
    [9]
    MEIRA J A D, ITURRIOZ I, WALBER M, et al. Numerical analysis of an intercity bus structure: A simple unifilar model proposal to assess frontal and semifrontal crash scenarios[J]. Latin American Journal of Solids and Structures, 2016, 13(9): 1616-1640. doi: 10.1590/1679-78252440
    [10]
    徐安, 乔向明. 公路客运安全分析与车辆制动性能建模[J]. 交通运输工程学报, 2009, 9(6): 87-91. doi: 10.3969/j.issn.1671-1637.2009.06.017

    XU An, QIAO Xiangming. Safety analysis of highway passenger transport and modeling of vehicle brake performances[J] Journal of Traffic and Transportation Engineering. 2009, 9(6): 87-91. (in Chinese). doi: 10.3969/j.issn.1671-1637.2009.06.017
    [11]
    WANG Shuoyen, WU Kunfeng. Reducing intercity bus crashes through driver rescheduling[J]. Accident Analysis & Prevention, 2019(122): 25-35. http://www.ncbi.nlm.nih.gov/pubmed/30300796
    [12]
    BESHARATI M M, KASHANI A T. Factors contributing to intercity commercial bus drivers'crash involvement risk[J]. Archives of Environmental & Occupational Health, 2018, 73(4): 243-250.
    [13]
    TSAI Chengjung, LEE Chieni, YANG Weipang. A discretization algorithm based on class-attribute contingency coefficient[J]. Information Sciences, 2008, 178(3): 714-731. doi: 10.1016/j.ins.2007.09.004
    [14]
    安宁, 藤越, 杨矫云, 等. 基于因果效应的贝叶斯网络结构学习方法[J]. 计算机应用研究, 2018, 35(12): 3609-3613. doi: 10.3969/j.issn.1001-3695.2018.12.019

    AN Ning, TENG Yue, YANG Jiaoyun, et al. Bayesian network structure learning method based on causal effect[J]. Application Research of Computers, 2018, 35(12): 3609-3613. (in Chinese). doi: 10.3969/j.issn.1001-3695.2018.12.019
    [15]
    刘飞, 张绍武, 高红艳. 基于部分互信息和贝叶斯打分函数的基因调控网络构建算法[J]. 西北工业大学学报, 2017, 35(5): 876-883. doi: 10.3969/j.issn.1000-2758.2017.05.020

    LIU Fei, ZHANG Shaowu, GAO Hongyan. Inferring gene regulatory networks based on part mutual information and Bayesian scoring function[J]. Journal of Northwestern Polytechnical University, 2017, 35(5): 876-883. (in Chinese). doi: 10.3969/j.issn.1000-2758.2017.05.020
    [16]
    KRASKOV A, STOGBAUER H, GRASSBER-GER P. Estimating mutual information[J]. Physical Review E, 2004, 69(6): 1-16. http://www.ams.org/mathscinet-getitem?mr=2096503
    [17]
    綦小龙, 高阳, 王皓, 等. 一种可度量的贝叶斯网络结构学习方法[J]. 计算机研究与发展, 2018, 55(8): 1717-1725. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201808013.htm

    QI Xiaolong, GAO Yang, WANG hao, et al. A measurable Bayesian network structure learning method[J]. Journal of Computer Research and Development, 2018, 55(8): 1717-1725. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201808013.htm
    [18]
    ZHANG Yongli, YANG Yuhong. Cross-validation for selecting a model selection procedure[J]. Journal of Econometrics, 2015, 187(1): 95-112. doi: 10.1016/j.jeconom.2015.02.006
    [19]
    周志华. 机器学习[M]北京: 清华大学出版社, 2016.

    ZHOU Zhihua. Machine learning[M]. Beijing: Tsinghua University Press, 2016. (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(6)

    Article Metrics

    Article views (1373) PDF downloads(182) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return