Volume 40 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
LI Fu, XU Liangjie, CHEN Guojun, ZHU Ranbo. An Analysis of Spatial-temporal Characteristics of Origin and Destination of Shared-bike Users[J]. Journal of Transport Information and Safety, 2022, 40(3): 146-153. doi: 10.3963/j.jssn.1674-4861.2022.03.015
Citation: LI Fu, XU Liangjie, CHEN Guojun, ZHU Ranbo. An Analysis of Spatial-temporal Characteristics of Origin and Destination of Shared-bike Users[J]. Journal of Transport Information and Safety, 2022, 40(3): 146-153. doi: 10.3963/j.jssn.1674-4861.2022.03.015

An Analysis of Spatial-temporal Characteristics of Origin and Destination of Shared-bike Users

doi: 10.3963/j.jssn.1674-4861.2022.03.015
  • Received Date: 2020-12-23
    Available Online: 2022-07-25
  • In a view of the frequent imbalance between supply and demand and uneven distribution of shared bikes over space, this paper studies the origin-destination distribution of shared-bike users and the temporal characteristics of riding demand in different areas, so as to provide theoretical support for dispatch operations of shared-bike systems. Based on riding data of users, the mean-shift algorithm is used to cluster the origin and destination points of riding, and the distribution of areas with a high riding record is obtained. Then, Spearman correlation coefficient is used to measure the similarity of temporal characteristics of riding demand. Six typical temporal characteristics of riding demand are extracted by clustering the temporal cumulative differences between the volumes of rented and returned bikes in different areas. The relationship between temporal characteristics of riding demand and land use (represented by point of interest, POI)is studied by factor analysis. The results show that the spatial distribution of aggregation areas of shared bikes is basically correlated to the spatial pattern of the urban road network in the area. There is little variation for the distribution of aggregation areas in different time periods, and the only difference is the volume of bike riding in different areas. Besides, it shows that temporal characteristics of riding demand and land use are related. Commercial land use is the dominating factor for the areas where the number of rented bicycles is less than that of returned bicycles in one day, which accounts for 40% of the total. For the areas where the number of rented bicycles is larger than that of returned bicycles in one day, residential land use is the dominating factor, accounting for 57% of the total. In areas with mixed land use, the difference between bicycle renting and returning is small and prone to fluctuate. In addition, the proportion of dominant factors of a temporal characteristics of riding demand may change between weekday and weekend, and the temporal characteristics of riding demand in a region are different between weekday and weekend.

     

  • loading
  • [1]
    王光荣. 共享单车发展问题系统探究[J]. 长安大学学报(社会科学版), 2017, 19(2): 30-35. doi: 10.3969/j.issn.1671-6248.2017.02.005

    WANG G R. Systematic research on bicycle-sharing development[J]. Journal of Chang'an University(Social Science Edition), 2017, 19(2): 30-35. (in Chinese) doi: 10.3969/j.issn.1671-6248.2017.02.005
    [2]
    HAMILTON T L, WICHMAN C J. Bicycle infrastructure and traffic congestion: Evidence from DC's capitalbikeshare[J]. Journal of Environmental Economics and Management, 2018 (87): 72-93.
    [3]
    CAMPBELL K B, BRAKEWOOD C. Sharing riders: How bikesharing impacts bus ridership in New York City[J]. Transportation Research Part A: Policy and Practice, 2017(100): 264-282.
    [4]
    MATEO-BABIANO I, KUMAR S, MEJIA A. Bicyclesharing in Asia: A stakeholder perception and possible futures[J]. Transportation Research Procedia, 2017(25): 4970-4982.
    [5]
    袁朋伟, 董晓庆, 翟怀远, 等. 基于Nested Logit模型的共享单车选择行为研究[J]. 交通运输系统工程与信息, 2018, 18 (5): 191-196+210. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201805028.htm

    YUAN PW, DONG X Q, ZHAI H Y et al. Choice behavior of bike-sharing based on nested logit model[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(5): 191-196+210. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201805028.htm
    [6]
    ZHANG Y, THOMAS T, BRUSSEL M, et al. Exploring the impact of built environment factors on the use of public bikes at bike stations: Case study in Zhongshan, China[J]. Journal of Transport Geography, 2017(58): 59-70.
    [7]
    ZHAO D, ONG G P, WANG W, et al. Effect of built environment on shared bicycle reallocation: A case study on Nanjing, China[J]. Transportation Research Part A: Policyand Practice, 2019(128): 73-88.
    [8]
    TANG Y, PAN H, FEI Y. Research on users' frequency of ride in Shanghai Minhang bike-sharing system[J]. Transportation Research Procedia, 2017(25): 4983-4991.
    [9]
    HANDY S, BOARNET M, EWING R, et al. How the built environment affects physical activities: views from urban planning[J]. American Journal of Preventive Medicine, 2002(2): 64-73.
    [10]
    EL-ASSI W, MAHMOUD M S, HABIB K N. Effects of built environment and weather on bike sharing demand: A stationlevel analysis of commercial bike sharing in Toronto[J]. Transportation, 2017, 44(3): 589-613. doi: 10.1007/s11116-015-9669-z
    [11]
    MENG M, ZHANG J, WONG Y D, et al. Effect of weather conditions and weather forecast on cycling travel behavior in Singapore[J]. International Journal of Sustainable Transportation, 2016, 10(9): 773-780. doi: 10.1080/15568318.2016.1149646
    [12]
    徐家红, 周继彪, 马昌喜, 等. 基于二元有序概率的共享单车满意度评估方法[J]. 交通信息与安全, 2021, 39(3): 136-141+151. doi: 10.3963/j.jssn.1674-4861.2021.03.017

    XU J H, ZHOU J B, MA C X, et al. An evaluation method for bicycle sharing satisfaction based on a bivariateordered probit model[J]. Journal of Transport Information and Safety, 2021, 39(3): 136-141+151. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.03.017
    [13]
    李兴华, 张昕源, 成诚, 等. 考虑移步需求的无桩型共享单车动态调度研究[J]. 交通运输系统工程与信息, 2020, 20 (3): 182-189. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202003029.htm

    LI X H, ZHANG X Y, CHENG C, et al. Dynamic repositioning model for free-floating bike sharing system considering shifting demand[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(3): 182-189. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202003029.htm
    [14]
    蒋塬锐, 贾顺平, 李军. 基于调度池的共享单车调度研究[J]. 交通信息与安全, 2019, 37(5): 124-132. doi: 10.3963/j.issn.1674-4861.2019.05.016

    JIANG Y R, JIA S P, LI J. A study of bicycle-sharing scheduling based on scheduling pool[J]. Journal of Transport Information and Safety, 2019, 37(5): 124-132. (in Chinese) doi: 10.3963/j.issn.1674-4861.2019.05.016
    [15]
    孙启鹏, 曾开邦, 张锴琦, 等. 北京市共享单车出行的时空规律与需求预测研究[J]. 交通运输系统工程与信息, 2022, 22(1): 332-338. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202201035.htm

    SUN Q P, ZENG K B, ZHANG K Q, et al. Spatiotemporal travel patterns and demand prediction of shared bikes in Beijing[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1): 332-338. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202201035.htm
    [16]
    曹旦旦, 范书瑞, 张艳, 等. 基于长短期记忆神经网络模型的共享单车短时需求量预测[J]. 科学技术与工程, 2020, 20 (20): 8344-8349. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202020050.htm

    CAO D D, FAN S R, ZHANG Y, et al. Short-term demand forecasting of shared bicycles based on long short-term memory neural network model[J]. Science Technology and Engineering, 2020, 20(20): 8344-8349. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202020050.htm
    [17]
    李福, 徐良杰, 朱然博, 等. 基于XGBoost算法的共享单车借车需求量预测[J]. 武汉理工大学学报(交通科学与工程版), 2021, 45(5): 880-884. doi: 10.3963/j.issn.2095-3844.2021.05.013

    LI F, XU L J, ZHU R B, et al. Study on demand forecasting of rental volume of bike-sharing based on XGBoost algorithm[J]. Journal of Wuhan University of Technology(Transportation Sicence & Engineering), 2021, 45(5): 880-884. (in Chinese) doi: 10.3963/j.issn.2095-3844.2021.05.013
    [18]
    邓力凡, 谢永红, 黄鼎曦. 基于骑行时空数据的共享单车设施规划研究[J]. 规划师, 2017, 33(10): 82-88. doi: 10.3969/j.issn.1006-0022.2017.10.015

    DENG L F, XIE Y H, HUANG D X. Bicycle-sharing facility planning base on riding spatio-temporal data[J]. Planners, 2017, 33(10): 82-88. (in Chinese) doi: 10.3969/j.issn.1006-0022.2017.10.015
    [19]
    杨永崇, 柳莹, 李梁. 利用共享单车大数据的城市骑行热点范围提取[J]. 测绘通报, 2018(8): 68-37. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201808014.htm

    YANG Y C, LIU Y, LI L. Urban cycling hot spot extraction based on sharing-bikes' big data[J]. Bulletin of Surveying and Mapping, 2018(8): 68-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201808014.htm
    [20]
    高楹, 宋辞, 郭思慧, 等. 接驳地铁站的共享单车源汇时空特征及其影响因素[J]. 地球信息科学学报, 2021, 23(1): 155-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202101017.htm

    GAO Y, SONG C, GUO S H, et al. Spatial-temporal characteristics and influencing factors of source and sink of docklesssharing bicycles connected to subway stations[J]. Journal of Geo-information Science, 2021, 23(1): 155-170. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202101017.htm
    [21]
    高向东, 黎扬进, 刘秀航, 等. 改进均值漂移算法的焊缝特征点识别分析[J]. 华南理工大学学报(自然科学版), 2019, 47(4): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201904019.htm

    GAO X D, LI Y J, LIU X H, et al. Weld seam feature point recognition analysis based on improved mean-shift algorithm[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(4): 132-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201904019.htm
    [22]
    梁吉业, 冯晨娇, 宋鹏. 大数据相关分析综述[J]. 计算机学报, 2016, 39(1): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201601001.htm

    LIANG JY, FENG CJ, SONG P. A Survey on correlation analysis of big data[J]. Chinese Journal of Computers, 2016, 39(1): 1-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201601001.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (884) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return