Volume 40 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
ZHANG Chi, HU Ruilai, XIANG Delong, ZHANG Hong, ZHANG Min. A Prediction Model for Operation Speed of Six-axis Articulated Trains in Uphill Sections of Expressways[J]. Journal of Transport Information and Safety, 2022, 40(4): 128-137. doi: 10.3963/j.jssn.1674-4861.2022.04.014
Citation: ZHANG Chi, HU Ruilai, XIANG Delong, ZHANG Hong, ZHANG Min. A Prediction Model for Operation Speed of Six-axis Articulated Trains in Uphill Sections of Expressways[J]. Journal of Transport Information and Safety, 2022, 40(4): 128-137. doi: 10.3963/j.jssn.1674-4861.2022.04.014

A Prediction Model for Operation Speed of Six-axis Articulated Trains in Uphill Sections of Expressways

doi: 10.3963/j.jssn.1674-4861.2022.04.014
  • Received Date: 2022-06-20
    Available Online: 2022-09-17
  • The prediction error of operation speed of 6-axis articulated trains in uphill sections of expressways is large, and its safe operation management is challenging. An Operation Speed Prediction Model (OSPM) is proposed to address this issue. Radars and AxleLight side lasers are used to collect the traffic flow data of six-axis articulated trains at five continuous uphill sections of an expressway from Southwest China. Moreover, the actual operation speed is compared with the results from an existing standard prediction model. Then the OSPM for six-axis articulated trains in uphill sections of expressways is developed by taking the gradient and the length of the uphill, the specific power, and the initial speed of the trains as variables. Lastly, an error correction method is developed, and effectiveness of the proposed method is analyzed. The main results are shown as follows: the average rate of prediction error of the standard model reaches 25.37%, and the prediction error is relatively significant. The operation speed is negatively correlated to the gradient and the length of uphill, while it is positively correlated to specific power of the train. The goodness of fit of multiple linear regression model R2 is 0.978, meeting the test requirement. The difference between the predicted speed and the actual speed is in the range of 2-4 km/h, and the average relative error is 8.86%, which is 16.51% less than the standard model. Considering the influences of traffic density, the revised model can reduce the error within 1 km/h; the average relative error is 1.08%, which is 7.78% less than the original model and 24.29% less than the standard model. These results reveal that the proposed OSPM can considerably improve the accuracy of the operation speed prediction.

     

  • loading
  • [1]
    DONNELL E, NI Y, ADOLINI M, et al. Speed prediction models for trucks on two-lane rural highways[J]. Transportation Research Record. 2001, 1751(1): 44-55. doi: 10.3141/1751-06
    [2]
    PARK Y J, SACCOMANNO F F. Evaluating speed consistency between successive elements of a two-lane rural highway[J]. Transportation Research Part A: Policy and Practice. 2006, 40(1): 375-385.
    [3]
    DAVID L C, BRAYAN G H, ANA M P Z, et al. Speed prediction models for trucks on horizontal curves of two-lane rural roads[J]. Transportation Research Record. 2018, 2672(17): 72-82. doi: 10.1177/0361198118776111
    [4]
    MAJI A, SIL G, TYAGI A. 85th and 98th percentile speed prediction models of car, light, and heavy commercial vehicles for four-lane divided rural highways[J]. Journal of Transportation Engineering, Part A: Systems. 2018, 144(5): 1-8.
    [5]
    林宣财, 张旭丰, 王佐, 等. 大型货车功重比对高速公路连续下坡路段交通安全性的影响[J]. 公路交通科技, 2021, 38(9): 98-104. doi: 10.3969/j.issn.1002-0268.2021.09.013

    LIN X C, ZAHNG X F, WANG Z, et al. Influence of power-weight ratio of large truck on traffic safety of continuous downhill section of expressway[J]. Journal of Highway and Transportation Research and Development, 2021, 38(9): 98-104. (inChinese doi: 10.3969/j.issn.1002-0268.2021.09.013
    [6]
    束海波, 邵毅明. 高速公路上坡路段半挂汽车列车行驶速度特性试验研究[J]. 重庆交通大学学报(自然科学版), 2019, 38(9): 128-132. doi: 10.3969/j.issn.1674-0696.2019.09.21

    SHU H B, SHAO Y M. Experimental study on operating speed characteristics of tractor-semitrailer on expressway uphill section[J]. Journal of Chongqing Jiaotong University(Natural Science), 2019, 38(9): 128-132. (inChinese doi: 10.3969/j.issn.1674-0696.2019.09.21
    [7]
    MCFADDEN J, YANG W T, DURRANS S. Application of artificial neural networks to predict speeds on two-lanerural highways[J]. Transportation Research Record. 2001, 1751(1): 9-17. doi: 10.3141/1751-02
    [8]
    MORRIS C M, DONNELL E T. Passenger car and truck operating speed models on multilane highways with combinations of horizontal curves and steep grades[J]. Journal of Transportation Engineering, 2014, 140(11), 401-405.
    [9]
    SVENSON G, FJELD D. The impact of road geometry, surface roughness and truck weight on operating speed of logging trucks[J]. Scandinavian Journal of Forest Research, 2017 (32): 515-527.
    [10]
    李维东, 乔建刚, 郭蕊. 基于TruckSim的大型货物运输车辆安全运行纵坡最大长度研究[J]. 中国安全生产科学技术, 2020, 16(8): 179-185. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK202008036.htm

    LI W D, QIAO J G, GUO R. Research on maximum length of highway longitudinal slope for safe operation of large cargo transportation vehicles based on truckSim[J]. Journal of Safety Science and Technology, 2020, 16(8): 179-185. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK202008036.htm
    [11]
    吴艳霞, 刘剑, 黄帅等. 雨天高速公路纵坡对驾驶员心率及行车速度影响[J]. 交通信息与安全, 2021, 39(4): 35-42. doi: 10.3963/j.jssn.1674-4861.2021.04.005

    WUY X, LIU J, HUANG S, et al. Influences of longitudinal slopes of highways on drivers' heart rate and driving speeds on rainy days[J]. Journal of Transport Information and Safety, 2021, 39(4): 35-42. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.04.005
    [12]
    徐婷, 李敏, 杨新新, 等. 重载车爬坡下的公路临界坡长确定[J]. 交通信息与安全, 2016, 34(3): 88-95. doi: 10.3963/j.issn1674-4861.2016.03.012

    XU T, Ll M, YANG X X, et al. The critical length of slopes on highways for heavy-duty vehicles[J]. Journal of Transport Information and Safety, 2016, 34(3): 88-95. (in Chinese) doi: 10.3963/j.issn1674-4861.2016.03.012
    [13]
    董忠红, 倪凤英, 柳帅蒙, 等. 长大纵坡路段重型车辆爬坡速度[J]. 长安大学学报(自然科学版), 2014, 34(3): 23-27. doi: 10.3969/j.issn.1671-8879.2014.03.004

    DONG Z H, Nl F Y, LIU S M, et al. Heavy truck climbing speed on long and steep longitudinal slope section[J]. Journal of Chang'an University(Natural Science Edition). 2014, 34(3): 23-27. (in Chinese) doi: 10.3969/j.issn.1671-8879.2014.03.004
    [14]
    刘学. 长大纵坡路段重型车辆荷载特性研究[D]. 西安: 长安大学, 2013.

    LIU X. Study on the loading performance of long and steep longitudinal slope sections under heavy truck[D]. Xi'an: Chang'an University, 2013. (in Chinese)
    [15]
    方靖, 荣建, 祝站东. 自由流状态的判别标准研究[J]. 中国公路学报, 2010, 23(增刊1): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL2010S1013.htm

    FANG J, RONG J, ZHU Z D. Research on discrimination criterion of free flow state[J]. China Journal ofHighway and Transport, 2010, 23(S1): 65-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL2010S1013.htm
    [16]
    中华人民共和国交通运输部. 公路项目安全性评价规范: JTG/T B05-2015[S]. 北京: 人民交通出版社, 2015.

    Ministry of Transport, People's Republic of China. Highway project safety evaluation specification: JTG/T B05-2015[S]. Beijing: China Communications Press, 2015. (inChinese
    [17]
    长安大学. 2016中国高速公路运输量统计调查分析报告[M]. 北京: 人民交通出版社, 2017.

    Chang'an University. Statistical investigation and analysis report of China's highway transportation volume in 2016[M]. Beijing: China Communications Press, 2017. (inChinese
    [18]
    郭腾峰, 张志伟, 刘冰, 等. 适应6轴铰接列车动力性的高速公路最大纵坡坡度和坡长[J]. 交通运输工程学报, 2018, 18(3): 34-43. doi: 10.3969/j.issn.1671-1637.2018.03.005

    GUO T F, ZHANG Z W, LIU B, et al. Maximum grade and length of longitudinal slope adapted to dynamic performance of six-axis articulate[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 34-43. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.03.005
    [19]
    白辂韬. 基于线形条件的高速公路运行速度预测及控制研究[D]. 天津: 天津大学, 2013.

    BAI Y T. Research on expressway speed prediction and control based on linear conditions[D]. Tianjin: Tianjin University, 2013. (in Chinese)
    [20]
    李力, 姜锐, 贾斌, 等. 现代交通流理论与应用: 高速公路交通流. 卷Ⅰ[M]. 北京: 清华大学出版社, 2011.

    LI L, JIANG R, JIA B, et al. Modern traffic flow theory and application: Highway traffic flow. volume I[M]. Beijing: Tsinghua University Press, 2011. (in Chinese)
    [21]
    汪双杰, 周荣贵, 孙小端. 公路运行速度设计理论与方法[M]. 北京: 人民交通出版社, 2010.

    WANG S J, ZHOU R G, SUN X D. Theory and method ofhighway operation speed design[M]. Beijing: People's Communications Press, 2010. (in Chinese)
    [22]
    刘灿齐, 陈军. 基于Edie模型的路阻函数关系推导及其拟合分析研究[J]. 交通标准化, 2012(4): 33-36. doi: 10.3869/j.issn.1002-4786.2012.04.004

    LIU C Q, CHEN J. A deduction of impedance function based on edie model and ilts fitting analysis[J]. Communications Standardization, 2012(4): 33-36. (in Chinese) doi: 10.3869/j.issn.1002-4786.2012.04.004
    [23]
    李希瑞. 基于收费数据的高速公路交通流特性分析及通行能力研究[D]. 兰州: 兰州交通大学, 2020.

    LI X R. Analysis of expressway traffic flow characteristics and capacity research based on toll data[D]. Lanzhou: Lanzhou Jiaotong University, 2020. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(12)

    Article Metrics

    Article views (1015) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return