Volume 40 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
YAN Shaohua, XIE Xiaoxuan, ZHANG Zhaoning. A Short-term Prediction of Air Traffic Flow Based on a Wavelet-optimized GRU-ARMA Model[J]. Journal of Transport Information and Safety, 2022, 40(4): 177-184. doi: 10.3963/j.jssn.1674-4861.2022.04.019
Citation: YAN Shaohua, XIE Xiaoxuan, ZHANG Zhaoning. A Short-term Prediction of Air Traffic Flow Based on a Wavelet-optimized GRU-ARMA Model[J]. Journal of Transport Information and Safety, 2022, 40(4): 177-184. doi: 10.3963/j.jssn.1674-4861.2022.04.019

A Short-term Prediction of Air Traffic Flow Based on a Wavelet-optimized GRU-ARMA Model

doi: 10.3963/j.jssn.1674-4861.2022.04.019
  • Received Date: 2022-04-11
    Available Online: 2022-09-17
  • A short-term prediction of air traffic flow is important for air traffic management, and effectively reduce traffic congestion.To improve the accuracy of the short-term prediction and reduce the workload of air traffic controllers, a wavelet-optimized GRU-ARMA based model is proposed.Based on traditional prediction methods, the originaldata of air traffic flow is decomposed by multi-scale wavelet transform. The detailed features of traffic flow with different frequenciesare extracted. Moreover, by using wavelet transform, component at low frequencies is subdivided as trend term, and time at high frequencies as noise term.Among them, the trend term represents the overall evolution trends of air traffic flow over time, while the noise term describes the comprehensive influences of random factors on air traffic flow. The gated recurrent unit (GRU) neural network and the autoregressive moving average (ARMA) model are used to predict the trend and noise terms, respectively.The prediction values of trend and noise terms are superimposed to obtain the final value of short-termprediction. An error analysis shows that the method maintains a stable prediction of about 2% at each prediction point. In contrast, the models that directly use raw traffic data for prediction (i.e. GRU, BiLSTM, CNN-LSTM neural network models) and the single ARMA model have prediction errors ranging from 5% to 37.14%.Compared to the GRU, BiLSTM and CNN-LSTM neural network models, the prediction accuracy of the proposed model is increased by 3.02%, 5.39% and 5.05%, respectively.

     

  • loading
  • [1]
    王剑辉, 朱晓波, 夏正洪, 等. 基于知识图谱的国内空中交通管理研究可视化分析[J]. 交通信息与安全, 2019, 37(6): 11-19. doi: 10.3963/j.issn.1674-4861.2019.06.002

    WANG J H, ZHU X B, XIA Z H, et al. A visualization analysis of domestic air traffic management based on mapping knowledge domains[J]. Journal of Transport Information and Safety, 2019, 37(6): 11-19. (in Chinese) doi: 10.3963/j.issn.1674-4861.2019.06.002
    [2]
    陈恺, 曾培彬, 蔡浩. 改进型空中交通流量预测算法的验证与实现[J]. 计算机测量与控制, 2020, 28(12): 267-272. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK202012055.htm

    CHEN K, ZENG P L, CAI H. Verification and implementation of improved air traffic flow prediction method[J]. Computer Measurement and Control, 2020, 28(12): 267-272. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK202012055.htm
    [3]
    毛阿芳. 基于数据挖掘的四维航迹预测技术研究[D]. 唐山: 华北理工大学, 2021.

    MAO A F. Research on 4D track prediction technology based on data mining[D]. Tangshan: North China University of Science and Technology, 2021. (in Chinese)
    [4]
    PANG Y, LIU Y. Probabilistic aircraft trajectory prediction considering weather uncertainties using dropout as bayesian approximate variational inference[C]. AIAA Scitech 2020 Forum, Orlando, FL: AIAA, 2020.
    [5]
    LI S M, XU X H, MENG L H. Flight conflict fo recasting based on chaotic time series[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2012, 29 (4): 388-394.
    [6]
    CONG W, HU M H. Chaotic characteristic analysis of air traffic system[J]. Transactions of Nanjing University of Aeronautics and Astronautics: 2014, 31(6): 636-642.
    [7]
    王超, 郑旭芳, 王蕾. 交汇航路空中交通流的非线性特征研究[J]. 西南交通大学学报, 2017, 52(1): 171-178. doi: 10.3969/j.issn.0258-2724.2017.01.024

    WANG C, ZHENG X F, WANG L. Research on nonlinear characteristics of air traffic flows on converging air routes[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 171-178. (in Chinese) doi: 10.3969/j.issn.0258-2724.2017.01.024
    [8]
    王飞. 空中交通流非线性分形特征[J]. 西南交通大学学报, 2019, 54(6): 1147-1154. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201906004.htm

    WANG F. Nonlinear fractal characteristics of air traffic flow[J]. Journal of Southwest Jiaotong University, 2019, 54 (6): 1147-1154. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201906004.htm
    [9]
    王飞. 基于Hurst指数的空中交通流长相关性实证分析[J]. 中国民航大学学报, 2019, 37(2): 1-4. doi: 10.3969/j.issn.1674-5590.2019.02.001

    WANG F. Empirical analysis on air traffic flow long phase correlation based on Hurst exponent[J]. Journal of Civil Aviation University of China, 2019, 37(2): 1-4. (in Chinese) doi: 10.3969/j.issn.1674-5590.2019.02.001
    [10]
    杨阳. 空中交通流量短期预测方法研究[D]. 天津: 中国民航大学, 2017.

    YANG Y. Research on short term forecasting method of air traffic flow[D]. Tianjin: Civil Aviation University of China, 2017. in Chinese
    [11]
    王飞, 韩翔宇. 基于分形插值的空中交通流量短期预测[J/OL]. (2021-07)[2022-07-15]. http://kns.cnki.net/kcms/detail/11.1929.v.20210720.1106.016.html.

    WANG F, HAN X Y. Short-term prediction of air traffic flow based on fractal interpolation[J/OL]. (2021-07)[2022-07-15]. http://kns.cnki.net/kcms/detail/11.1929.v.20210720.1106.016.html. (in Chinese)
    [12]
    张兆宁, 张莹莹, 冀姗姗. 基于GA-BP神经网络的空中交通网络流系统拥堵预测[J]. 中国民航大学学报, 2021, 39(3): 1-5. doi: 10.3969/j.issn.1674-5590.2021.03.001

    ZHANG Z N, ZHANG Y Y, JI S S, Congestion prediction of flow system of air traffic network based on GA-BP neural network[J]. Journal of Civil Aviation University of China, 2021, 39(3): 1-5. (in Chinese) doi: 10.3969/j.issn.1674-5590.2021.03.001
    [13]
    赵元棣, 陈俊夫, 刘泽宇, 等. 基于K近邻模型的空中交通流量短期预测[J]. 中国民航大学学报, 2017, 35(5): 1-5+11. doi: 10.3969/j.issn.1674-5590.2017.05.001

    ZHAO Y L, CHEN J F, LIU Z Y, et al. Short-term air traffic flow forecast based on K-nearest neighbor algorithm[J], Journal of Civil Aviation University of China, 2017, 35(5): 1-5+11. (in Chinese) doi: 10.3969/j.issn.1674-5590.2017.05.001
    [14]
    闫少华, 崔海洋, 张兆宁. 一种基于支持向量机的飞行冲突探测方法[J]. 安全与环境学报, 2021, 21(3): 1211-1217. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202103042.htm

    YAN S H, CUI H Y, ZHANG Z N, A flight conflict detection method based on support vector machine[J]. Journal of Safety and Environment, 2021, 21(3): 1211-1217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202103042.htm
    [15]
    李桂毅, 胡明华. 考虑航段相关性的航路拥挤态势多模型融合动态预测方法[J]. 交通运输系统工程与信息, 2018, 18 (1): 215-222. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201801033.htm

    LI G Y, HU M H, Multi-model fusion dynamic prediction method of enroute congestion situation with considering the correlation of air route segment[J]. Journal of Transportation System Engineering and Information Technology, 2018, 18 (1): 215-222. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201801033.htm
    [16]
    PANG Y, XU N, LIU Y. Aircraft trajectory prediction using LSTM neural network with embedded convolutional layer[C]. The Annual Conference of the PHM Society. Scottsdale, AZ, USA: PHM Society, 2019.
    [17]
    GUAN G, ZHOU Z, WANG J, et al. Machine learning aided air traffic flow analysis based on aviation big data[J]. IEEE Transactions on Vehicular Technology, 2020, 69(5): 4817-4826. doi: 10.1109/TVT.2020.2981959
    [18]
    尚然然. 基于数据挖掘的终端区短期流量预测技术研究[D]. 唐山: 华北理工大学, 2021.

    SHANG R R. Research on short-term traffic flow prediction technology in terminal area based on data mining[D]. Tangshan: North China University of Science and Technology, 2021. (in Chinese)
    [19]
    徐一帆. 基于小波降噪技术的OPAX方法改进研究及应用[D]. 沈阳: 沈阳理工大学, 2020.

    XU Y F. Study and application of OPAX method based on wavelet denoising technology[D]. Shenyang: Shenyang Ligong University, 2020. (in Chinese)
    [20]
    夏飞, 李明特. 联合BIC准则和多重注意力机制的空调能耗预测[J]. 低温与超导, 2022, 50(4): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DWYC202204014.htm

    XIA F, LI M T, Air conditioning energy prediction using combined BIC criterion and multiple attention mechanism[J]. Cryogenics and Superconductivity, 2022, 50(4): 81-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DWYC202204014.htm
    [21]
    刘明, 王永瑜. Durbin-Watson自相关检验应用问题探讨[J]. 数量经济技术经济研究, 2014, 31(6): 153-160. https://www.cnki.com.cn/Article/CJFDTOTAL-SLJY201406011.htm

    LIU M, WANG Y Y. Exploring in Durbin-Watson autocorrelation test[J]. The Journal of Quantitative and Technical Economics, 2014, 31(6): 153-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLJY201406011.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (1024) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return