Volume 40 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
ZHAO Xing, WANG Peng, CHAO Peipei, LI Ning, LIANG Xinmiao, DONG Honglei. An Overview on Research Progress of Sensors for Detecting Safety of Lithium Batteries[J]. Journal of Transport Information and Safety, 2022, 40(6): 127-136. doi: 10.3963/j.jssn.1674-4861.2022.06.013
Citation: ZHAO Xing, WANG Peng, CHAO Peipei, LI Ning, LIANG Xinmiao, DONG Honglei. An Overview on Research Progress of Sensors for Detecting Safety of Lithium Batteries[J]. Journal of Transport Information and Safety, 2022, 40(6): 127-136. doi: 10.3963/j.jssn.1674-4861.2022.06.013

An Overview on Research Progress of Sensors for Detecting Safety of Lithium Batteries

doi: 10.3963/j.jssn.1674-4861.2022.06.013
  • Received Date: 2022-03-29
    Available Online: 2023-03-27
  • In recent years, due to the frequent occurrence of lithium-battery accidents caused by thermal runaways, it is particularly important to apply the battery-safety monitoring systems. To improve the performance, extend the cycle life of lithium batteries and avoid the occurrence of those accidents, it is necessary to use sensor technique to monitor the working states of batteries in real-time. Based on the changes of physical variables in the batteries' working states, the commonly used safety detection signals include stress-strain, temperature, and gas. At present, safety-detection sensors for monitoring the signals are widely used in battery-state detection system. However, traditional sensors have some disadvantages, such as large volume, low sensitivity, and poor resistance to electrolytic corrosion. After outlining the working principles of the new fiber Bragg grating sensor, flexible film sensor and semi-conducting gas sensor, this paper summarizes the applications of the above three sensors in detecting stress-strain, temperature, and gas, and discusses the shortcomings of current studies from the perspectives of stability and sensitivity.The shortcomings include the poor applicability of the fiber Bragg grating sensor, the negative impact of the flexible film sensor on battery performance, and the low accuracy and short life of the semi-conducting gas sensor. The questions how to install the sensors into the battery cells in an economical, safe and practical way, how to reduce the influence of the sensors on the cycle performance of batteries in practice, and how to improve the stability, accuracy and sensitivity of sensor-signal transmission are crucial for the development of sensors for safety detection system of lithium-battery, which still need massive research on the sensor and battery design.

     

  • loading
  • [1]
    李宗赞. 应力及材料塑性变形对锂离子电池性能的影响[D]上海: 上海大学, 2015.

    LI Z Z. Impacts of stress and plastic deformation on the performance of lithium ion batteries[D]. Shanghai: Shanghai University, 2015. (in Chinese)
    [2]
    CHRISTENSEN J, NEWMAN J. Stress generation and fracture in lithium insertion materials[J]. Journal of Solid State Electrochemistry, 2006, 10(5): 293-319. doi: 10.1007/s10008-006-0095-1
    [3]
    WANG Q S, PING P, ZHAO X, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012(208): 210-224.
    [4]
    LIAO Z, ZHANG S, LI K, et al. A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries[J]. Journal of Power Sources, 2019(436): 226879-226897.
    [5]
    PESARAN A, SANTHANAGOPALAN A, SANTHANAGOPALAN S, et al. Addressing the impact of temperature extremes on large format Li-ion batteries for vehicle applications[C]. The 30thInternational Battery Seminar, Florida: National Renewable Energy Laboratory Golden, Colorado, 2013.
    [6]
    LIU H Q, WEI Z B, HE W D, et al. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review[J]. Energy Conversion and Management, 2017(150): 304-330.
    [7]
    李军求, 吴朴恩, 张承宁. 电动汽车动力电池热管理技术的研究与实现[J]. 汽车工程, 2016, 38(1): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201601004.htm

    LI J Q, WU P E, ZHANG C N. Study and implementation of thermal management technology for the power batteries of electric vehicles[J]. Automotive Engineering, 2016, 38(1): 22-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201601004.htm
    [8]
    FENG X N, ZHENG, S, REN D, et al., Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019(246): 53-64.
    [9]
    YANG G, LEI C, LI Y, et al. Real-time temperature measurement with fiber Bragg sensors in lithium batteries for safety usage[J]. Measurement, 2013, 46(9): 3166-3172. doi: 10.1016/j.measurement.2013.05.027
    [10]
    褚维达, 童杏林, 冒燕, 等. 锂离子电池内部植入光纤光栅传感器存活实验研究[J]. 激光杂志, 2021, 42(8): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202108004.htm

    CHU W D, TONG X L, MAO Y, et al. Experimental study on survival of fiber Bragg grating sensor implanted in lithium ion battery[J]. Laser Journal, 2021, 42(8): 19-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202108004.htm
    [11]
    SIRTHAWORNSANT S, NIYOMGOOL A, SUKSOMPONG P, et al. Fiber Bragg grating FBG sensing temperature characteristic and application in water and air[C]. International Conference on Electrical Engineering/electronics, Phuket, Thailand: IEEE, 2017.
    [12]
    YANG G, LEI T C, LI Y, et al. Real-time temperature measurement with fiber Bragg sensors in lithium batteries for safety usage[J]. Measurement, 2013(46): 3166-3172.
    [13]
    RAGHAVAN A, KIESEL P, SOMMER L W, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: Cell embedding method and performance[J]. Journal of Power Sources, 2017(341): 466-473.
    [14]
    GANGULI A, SAHA B, RAGHAVAN A, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: Internal cell signals and utility for state estimation[J]. Journal of Power Sources, 2017(341): 474-482.
    [15]
    SOMMER L W, KIESEL P, GANGULI A, et al. Fast and slow ion diffusion processes in lithium ion pouch cells during cycling observed with fiber optic strain sensors[J]. Journal of Power Sources, 2015, 296(20): 46-52.
    [16]
    SOMMER W L, RAGHAVAN A, SCHWART J, et al. Monitoring of intercalation stages in lithium-ion cells over charge-discharge cycles with fiber optic sensors[J]. Journal of the Electrochemical Society, 2015, 162(14): A2664-A2669. doi: 10.1149/2.0361514jes
    [17]
    ALEKSANDRA F, MAX T, NICK W, et al. Preliminary study on integration of fiber optic bragg grating sensors in Li-ion batteries and in situ strain and temperature monitoring of battery cells[J]. Energies 2017, 10(7): 838-848. doi: 10.3390/en10070838
    [18]
    BAE C J, MANANDHAR A, et al. Monitoring the strain evolution of lithium-ion battery electrodes using an optical fiber bragg grating sensor[J]. Energy Technology Generation Conversion Storage Distribution, 2016, 4(7): 851-855.
    [19]
    NOVAIS S, NASCIMENTO M, GRANDE L, et al. Internal and external temperature monitoring of a li-Ion battery with fiber bragg grating sensors[J]. Sensors, 2016, 16(9): 1394-1402. doi: 10.3390/s16091394
    [20]
    MEYER J, NEDJAKOV A, DOERING A, et al. Fiber optical sensors for enhanced battery safety[C]. SPIE Sensing Technology+Applications, Baltimore, Maryland, USA, 2015.
    [21]
    许守平, 胡娟, 徐翀, 等. 1种基于光纤光栅传感的锂离子电池温度测量方法[J]. 电器与能效管理技术, 2020(12): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DYDQ202012015.htm

    XU S P, HU J, XU C, et al. A temperature measurement method of civet ion battery based on fiber bragg grating sensing[J]. Electrical appliances and energy efficiency management technology, 2020(12): 85-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DYDQ202012015.htm
    [22]
    RAGHAVAN A, KIESEL P, SOMMER LW, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: Cell embedding method and performance[J]. Journal of Power Sources, 2017(341): 466-473.
    [23]
    AMIETSZAJEW T, MCTURK E, FLEMING J, et al. Understanding the limits of rapid charging using instrumented commercial 18650 high-energy Li-ion cells[J]. Electrochimica Acta, 2018(263): 346-352.
    [24]
    HUANG J, BLANQUER L A, BONEFACINO J, et al. Operando decoding of chemical and thermal events in commercial Na/Li-ion cells via optical sensors[J]. Nature Energy, 2020(5): 674-683.
    [25]
    刘振全, 王汉芝. 金属热电阻温度传感器在多路温度监控系统中的应用[J]. 传感器世界, 2006, 12(12): 25-27. https://www.cnki.com.cn/Article/CJFDTOTAL-CGSJ200612005.htm

    LIU Z Q, WANG H Z. The application of metal thermal resistance temperature sensor in multi-channel temperature control system[J]. Sensor World, 2006, 12(12): 25-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CGSJ200612005.htm
    [26]
    LEE C Y, LEE S J, TANG M S, et, al. In-Situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors[J]. Sensors, 2011, 11(10): 9942-9950.
    [27]
    LEE C Y, LEE S J, CHEN Y H, et al. In-situ monitoring of temperature and voltage in lithium-ion battery by embedded flexible micro temperature and voltage sensor[J]. International Journal of Electrochemical Science, 2013, 8(2): 2968-2976.
    [28]
    LEE C Y, PENG H C, LEE S J, et al. A flexible three-in-one microsensor for real-time monitoring of internal temperature, voltage and current of lithium batteries[J]. Sensors, 2015(15): 11485-11498.
    [29]
    LEE C Y, LEE S J, HUNG Y M, et al. Integrated microsensor for real-time microscopic monitoring of local temperature, voltage and current inside lithium ion battery[J]. Sensors and Actuators A Physical, 2017(253): 59-68.
    [30]
    ZHU S X, HAN J D, AN H Y, et al. A novel embedded method for in-situ measuring internal multi-point temperatures of lithium ion batteries[J]. Journal of Power Sources, 2020(456): 227981-227986.
    [31]
    MUTYALA M K, ZHAO J, LI J, et al. In-situ temperature measurement in lithium ion battery by transferable flexible thin film thermocouples[J]. Journal of Power Sources, 2014(260): 43-49.
    [32]
    潘小山, 杨滢璇, 王琴, 等. 用于锂电池原位温度监测的柔性薄膜传感器研究[J]. 传感器与微系统, 2018, 37(5): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201805008.htm

    PAN X S, YANG Y X, WANG Q, et al. Research on flexible thin-film sensors applied for in-situ temperature monitoring of lithium ion battery[J]. Transducer and Microsystem Technologies, 2018, 37(5): 27-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201805008.htm
    [33]
    MARTINY N, GEDER J, WANG Y, et al. Development of a thin-film thermocouple matrix for in-situ temperature measurement in a lithium ion pouch cell[C]. 2013 IEEE Sensors, Baltimore, MD, USA: IEEE, 2013.
    [34]
    MARTINY N, RHEINFLED A, GEDER J, et al. Development of an all Kapton-based thin-film thermocouple matrix for in-situ temperature measurement in a lithium ion pouch cell[J]. IEEE Sensors, 2014(14): 3377-3384.
    [35]
    SZ A, LE Y A, JW A, et al. In operando measuring circumferential internal strain of 18650 Li-ion batteries by thin film strain gauge sensors[J]. Journal of Power Sources, 2021(516): 230669.
    [36]
    SHENG X Z LE Y, JIN B F, et al. In-situ obtained internal strain and pressure of the cylindrical Li-ion battery cell with silicon-graphite negative electrodes[J]. Journal of Energy Storage, 2021(42): 103049.
    [37]
    JIN Y, ZHENG Z, WEI D, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 4(8): 1-16.
    [38]
    郭东亮, 刘洋, 肖鹏, 等. 储能电站用锂离子电池热失控早期预警参数研究[J]. 消防科学与技术, 2020, 39(8): 1156-1159. https://www.cnki.com.cn/Article/CJFDTOTAL-XFKJ202008033.htm

    GUO D L, LIU Y, XIAO P, et al. Research on early warning parameters of thermal runaway of lithium ion battery for energy storage power station[J]. Fire Science and Technology, 2020, 39(8): 1156-1159. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XFKJ202008033.htm
    [39]
    王志荣. 基于气体监测的锂离子电池组热失控自动报警器及其监测方法: CN108008083A[P]. 2018-05-08.

    WANG Z R. Automatic thermal runaway alarm of lithium ion battery pack based on gas monitoring and its monitoring method: CN108008083A[P]. 2018-05-08. (in Chinese)
    [40]
    CUMMINGS S R, SWARTZ S L, FRANK N B, et al. Systems and methods for monitoring for a gas analyte. US20180003685A1[P]. US, 2017-06-29.
    [41]
    CUMMINGS S R, SWARTZ S L. Off-gas monitoring for lithium ion battery health and safety[R]. Wright Patterson AFB: Power Sources Committee Meeting, 2017.
    [42]
    杨启帆, 马宏忠, 刘宝稳, 等. 锂离子电池气体故障特性分析及诊断方法[J]. 高电压技术, 2021, 47(9): 3315-3330. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ202109029.htm

    YANG Q F, MA H Z, LIU B W, et al. Gas fault characteristics analysis and diagnosis method of lithium-ion battery[J]. High Voltage Engineering, 2021, 47(9): 3315-3330. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ202109029.htm
    [43]
    刘强, 李晨, 黄翔, 等. 基于VOC气体的锂离子电池异常状态的评估方法及系统: CN113671385A[P]. 2021-11-19.

    LIU Q, LI C, HUANG Q, et al. Evaluation method and system for abnormal state of lithium ion battery based on VOC gas: CN113671385A[P]. 2021-11-19. (in Chinese)
    [44]
    葛磊, 姚冰, 郭玉坤. 1种锂电池热失控监测告警传感装置: CN111799248A[P]. 2020-10-20.

    GE L, YAO B, GUO Y K. The utility model relates to a lithium battery thermal runaway monitoring and alarm sensing device: CN111799248A[P]. 2020-10-20. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (995) PDF downloads(116) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return