Volume 41 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
DING Ling, XIAO Jinsheng, LI Bijun, LI Liang, CHEN Yu, HU Luokai. Lane Detection Method Based on Semantic Segmentation and Road Structure[J]. Journal of Transport Information and Safety, 2023, 41(3): 103-110. doi: 10.3963/j.jssn.1674-4861.2023.03.011
Citation: DING Ling, XIAO Jinsheng, LI Bijun, LI Liang, CHEN Yu, HU Luokai. Lane Detection Method Based on Semantic Segmentation and Road Structure[J]. Journal of Transport Information and Safety, 2023, 41(3): 103-110. doi: 10.3963/j.jssn.1674-4861.2023.03.011

Lane Detection Method Based on Semantic Segmentation and Road Structure

doi: 10.3963/j.jssn.1674-4861.2023.03.011
  • Received Date: 2022-07-09
    Available Online: 2023-09-16
  • The accurate detection of lane markings plays a crucial role in the performance of intelligent assisted driving and lane departure warning systems. Current traditional research methods generally lack adaptability to complex road environments and need to improve detection accuracy. To address the problem of lane marking detection in complex traffic environments, a lane marking detection method based on semantic segmentation and road structure is proposed. The algorithm adopts an Encoder-Decoder network architecture to improve semantic segmentation. It uses the indexing function of pooling layers to perform upsampling in a de-convolutional manner, connecting multiple convolutional layers after each upsampling. The segmentation network is then trained using the standard cross-entropy loss function to obtain road segmentation images that exclude external environmental interference. Perspective transformation is applied to the segmented road images, and Hough transform and parameter space voting of edge points are used to quickly extract and correct the left and right boundary edge points of the lane markings. The extracted edge points are fitted using Bezier curves to achieve smooth display of the lane markings. The proposed algorithm was trained and tested on relevant lane marking datasets. Compared to the parameter space voting method, it achieved a 5.1% increase in accuracy with an average increase of 8 ms in time. Compared to the convolutional neural networks (CNN) network method, it had a 1.75% decrease in accuracy with an average decrease of 6.2 ms in time. The test results demonstrate that the proposed semantic segmentation encoding-decoding network helps optimize the model structure and reduces the demand for computing hardware resources while meeting real-time detection requirements.

     

  • loading
  • [1]
    KUSANO K D, GABLER H C. Comparison of expected crash and injury reduction from production forward collision and lane departure warning systems[J]. Journal of Crash Prevention & Injury Control, 2015, 16(2): 109-114.
    [2]
    ABRAMOV A, BAYER C, HELLER C, et al. Multi-lane perception using feature fusion based on GraphSLAM[C]. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), Daejeon, Korea(South): IEEE, 2016.
    [3]
    LI Q, ZHOU J, LI B J, et al. Robust lane-detection method for low-speed environments[J]. Sensors, 2018, 18(12): 4274. doi: 10.3390/s18124274
    [4]
    NEVEN D, BRABANDERE B D, GEORGOULIS S, et al. Towards end-to-end lane detection: an instance segmentation approach[C]. IEEE Intelligent Vehicles Symposium, Changshu, China: IEEE, 2018.
    [5]
    NAROTE S P, BHUJBAL P N, NAROTE A S, et al. A review of recent advances in lane detection and departure warning system[J]. Pattern Recognition, 2018, 1(73): 216-234.
    [6]
    DING L, ZHANG H Y, XIAO J S, et al. A lane detection method based on semantic segmentation[J]. Computer Modeling in Engineering & Sciences, 2020, 122(3): 1039-1053.
    [7]
    NAVARRO J, DENIELl J, YOUSFI E, et al. Influence of lane departure warnings onset and reliability on car drivers' behaviors. [J]. Applied Ergonomics, 2017: 123-131.
    [8]
    KAZEMI M, BALEGHI Y. L*a*b* color model based road lane detection in autonomous vehicles[J]. Bangladesh Journal of Scientific and Industrial Research, 2017, 52(4): 273-280. doi: 10.3329/bjsir.v52i4.34814
    [9]
    XIAO J, LUO L, YAO Y, et al. Lane detection based on road module and extended Kalman filter[C]. Pacific-Rim Symposium on Image and Video Technology, Wuhan, China: IEEE, 2017.
    [10]
    刘彬, 刘宏哲. 基于改进Enet网络的车道线检测算法[J]. 计算机科学, 2020, 47(4): 142-149. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA202004023.htm

    LIU B, LIU H Z. Lane detection algorithm based on improved enet network[J]. Computer Science, 2020, 47(4): 142-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA202004023.htm
    [11]
    REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
    [12]
    DING L, XU Z R, ZONG J F, et al. A lane line detection algorithm based on convolutional neural network[C]. Geometry and Vision First International Symposium, Auckland, New Zealand: IEEE, 2021.
    [13]
    GAIKWAD V, LOKHANDE S D. Lane departure identification for advanced driver assistance[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 910-918.
    [14]
    周经美, 王钰, 宁航, 等. 面向多元场景结合GLNet的车道线检测算法[J]. 中国公路学报, 2021, 34(7): 118-127. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202107010.htm

    ZHOU J M, WANG Y, NING H, et al. Lane detection algorithm based on GLNet for multiple scenes[J]. China Journal of Highway and Transport, 2021, 34(7): 118-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202107010.htm
    [15]
    PAN X, SHI J, LUO P, et al. Spatial as deep: spatial CNN for traffic scene understanding[C]. 32nd AAAI Conference on Artificial Intelligence, New Orleans, LA, United States: IEEE, 2018.
    [16]
    杨鹏强, 张艳伟, 胡钊政. 基于改进RepVGG网络的车道线检测算法[J]. 交通信息与安全, 2022, 40(2): 73-81. doi: 10.3963/j.jssn.1674-4861.2022.02.009

    YANG P Q, ZHANG Y W, HU Z Z. Lane-line detection algorithm based on an improved RepVGG network[J]. Journal of Transport Information and Safety, 2022, 40(2): 73-81. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.02.009
    [17]
    HOU Y, MA Z, LIU C, et al. Learning lightweight lane detection CNNs by self attention distillation[C]. International Conference on Computer Vision, Seoul, Korea: IEEE, 2019.
    [18]
    HAO T, XU X L, QI L Y, et al. Edge computation offloading and caching for self-driving with deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2021, 12 (70): 13281-13293.
    [19]
    彭红, 肖进胜, 程显. 基于扩展卡尔曼滤波器的车道线检测算法[J]. 光电子·激光, 2015(3): 567-574.

    PENG H, XIAO J S, CHENG X. Lane detection algorithm based on extended Kalman filter[J]. Journal of Optoelectronics·Laser, 2015(3): 567-574. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(4)

    Article Metrics

    Article views (622) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return