Volume 41 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
CHEN Lijia, ZHOU Naiqi, LI Shigang, LIU Kezhong, WANG Kai, ZHOU Yang. A Method of Ship Trajectory Prediction Based on a C-Informer Model[J]. Journal of Transport Information and Safety, 2023, 41(6): 51-60. doi: 10.3963/j.jssn.1674-4861.2023.06.006
Citation: CHEN Lijia, ZHOU Naiqi, LI Shigang, LIU Kezhong, WANG Kai, ZHOU Yang. A Method of Ship Trajectory Prediction Based on a C-Informer Model[J]. Journal of Transport Information and Safety, 2023, 41(6): 51-60. doi: 10.3963/j.jssn.1674-4861.2023.06.006

A Method of Ship Trajectory Prediction Based on a C-Informer Model

doi: 10.3963/j.jssn.1674-4861.2023.06.006
  • Received Date: 2023-07-03
    Available Online: 2024-04-03
  • The navigation of ships in complex environments is influenced by various uncertain factors, such as wind, waves, water depth, and ship performance, etc. It is challenging to precisely define and reflect the dynamic patterns of ship trajectories simply using mathematical models. To address this issue, a multi-step prediction method for ship trajectories based on feature engineering and neural networks is studied. The task of trajectory prediction is divided into two parts: data processing and model prediction. The data processing module preprocesses AIS trajecto-ry data using feature engineering methods. It starts by cleaning the raw AIS data, then uses the maximal information coefficient to select features highly correlated with the position prediction task. Additionally, a variable time interval information is introduced to address the problem of existing models only being able to select fixed time interval data for training and prediction. This module ultimately reconstructs high-quality ship trajectory sequences. The model prediction module constructs a ship trajectory prediction model based on C-Informer. It utilizes the multi-head Prob-Sparse self-attention mechanism of the Informer model to reduce the time complexity of the network model. Simul-taneously, it enhances prediction speed by generative decoding. By introducing a causal convolution module, the sensitivity of the model to neighboring time trajectory features is increased to compensate for the deficiencies of the Informer model in extracting local information. This adaption makes the model more suitable for ship trajectory prediction tasks. The experimental results based on Automatic Identification System (AIS) data near Nanjing port show that the C-Informer model for trajectory prediction has an overall mean square error (MSE) of 1.72×10-7 and a mean absolute error (MAE) of 2.43×10-4. Compared to the original Informer model, this represents a reduction of 28.6% and 31.9%, respectively. When training the C-Informer model with the selected feature combinations, the MSE and MAE are decreased by 57.7% and 42.1%, respectively, compared to using only latitude and longitude fea-tures. In predicting trajectories at different time steps, the C-Informer model reduces prediction time by up to 69.6% compared to the long short-term memory network model, with a maximum loss reduction of 75.8%.

     

  • loading
  • [1]
    郁舒昊, 周辉, 叶春杨, 等. SDFA: 基于多特征融合的船舶轨迹聚类方法研究[J]. 计算机科学, 2022, 49(增刊1): 256-260. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2022S1039.htm

    YU S H, ZHOU H, YE Y Q, et al. SDFA: study on ship trajectory clustering method based on multifeature fusion[J]. Computer Science, 2022, 49(S1): 256-260. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2022S1039.htm
    [2]
    SUO Y, CHEN W, CLARAMUNT C, et al. A ship trajectory prediction framework based on a recurrent neural network[J]. Sensors, 2020, 20(18): 5133. doi: 10.3390/s20185133
    [3]
    CHEN L, YANG P, LI S, et al. Online modeling and prediction of maritime autonomous surface ship maneuvering motion under ocean waves[J]. Ocean Engineering, 2023, 276: 114183. doi: 10.1016/j.oceaneng.2023.114183
    [4]
    VOLKOVA T A, BALYKINA Y E, BESPALOV A. Predicting ship trajectory based on neural networks using AIS data[J]. Journal of Marine Science and Engineering, 2021, 9(3): 254. doi: 10.3390/jmse9030254
    [5]
    ZHENG Y, LYU X, QIAN L, et al. An optimal BP neural net-work track prediction method based on a GA-ACO hybrid algorithm[J]. Journal of Marine Science and Engineering, 2022, 10(10): 1399. doi: 10.3390/jmse10101399
    [6]
    甄荣, 金永兴, 胡勤友, 等. 基于AIS信息和BP神经网络的船舶航行行为预测[J]. 中国航海, 2017, 40(2): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201702002.htm

    ZHEN R, JIN Y X, HU Q Y, et al. Vessel behavior prediction based on AIS data and BP neural network[J]. Navigation of China, 2017, 40(2): 6-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201702002.htm
    [7]
    胡玉可, 夏维, 胡笑旋, 等. 基于循环神经网络的船舶轨迹预测[J]. 系统工程与电子技术, 2020, 42(4): 871-877. https://cdmd.cnki.com.cn/Article/CDMD-10151-1024310879.htm

    HU Y K, XIA W, HU X X, et al. Vessel trajectory prediction based on recurrent neural network[J]. Systems Engineering and Electronics, 2020, 42(4): 871-877. (in Chinese) https://cdmd.cnki.com.cn/Article/CDMD-10151-1024310879.htm
    [8]
    王知昊, 元海文, 李维娜, 等. 交汇水域船舶轨迹预测与航行意图识别[J]. 交通信息与安全, 2022, 40(4): 101-109. doi: 10.3963/j.jssn.1674-4861.2022.04.011

    WANG Z H, YUAN H W, L W, et al. Trajectory prediction and intention identification of ships in confluence waters[J]. Journal of Transport Information and Safety, 2022, 40(4): 101-109. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.04.011
    [9]
    ZHANG X, FU X, XIAO Z, et al. Vessel trajectory prediction in maritime transportation: Current approaches and beyond[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 19980-19998. doi: 10.1109/TITS.2022.3192574
    [10]
    徐瑞龙, 祁云嵩, 石琳. 基于Transformer模型和Kalman滤波预测船舶航迹[J]. 计算机应用与软件, 2021, 38(5): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ202105019.htm

    XU R L, QI Y S, SHI L. Predicting ship tracks based on transformer model and Kalman filtering[J]. Computer Applications and Software, 2021, 38(5): 106-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ202105019.htm
    [11]
    JIANG D, SHI G, LI N, et al. TRFM-LS: transformer-based deep learning method for vessel trajectory prediction[J]. Journal of Marine Science and Engineering, 2023, 11(4): 880. doi: 10.3390/jmse11040880
    [12]
    甘少君. 数据驱动的内河限制性单向航道船舶调度模型及方法研究[D]. 重庆: 重庆大学, 2017.

    GAN S J. Study on data-driven vessel scheduling model and method for restricted one-way inland waterway transportation[D]. Chongqing: Chongqing University, 2017. (in Chinese)
    [13]
    张黎翔, 朱怡安, 陆伟, 等. 基于AIS数据的船舶轨迹修复方法研究[J]. 西北工业大学学报, 2021, 39(1): 119-125. https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD202101015.htm

    ZHANG L X, ZHU Y A, LU W, et al. Research on ship trajectory repair method based on AIS data[J]. Journal of Northwestern Polytechnical University, 2021, 39(1): 119-125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD202101015.htm
    [14]
    潘侃, 尹春林, 王磊, 等. 基于特征工程的重要节点挖掘方法[J]. 电子科技大学学报, 2021, 50(6): 930-937. https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX202106020.htm

    PAN K, YIN C L, WANG L, et al. Identifying critical nodes based on feature engineering[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(6): 930-937. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX202106020.htm
    [15]
    马杰, 何沐蓉, 贾承丰, 等. 基于上下文自编码的船舶行为语义表征[J]. 交通运输工程学报, 2022, 22(4): 334-347. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202204026.htm

    MA J, HE M R, JIA C F, et al. Semantic representation of ship behavior based on context autoencoder[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 334-347. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202204026.htm
    [16]
    张牧行, 申晓红, 何磊, 等. 1种水下目标识别的最大信息系数特征选择方法[J]. 西北工业大学学报, 2020, 38(3): 471-477. https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD202003003.htm

    ZHANG M X, SHEN X H, HE L, et al. A maximum information coefficient feature selection method for underwater target recognition[J]. Journal of Northwestern Polytechnical University, 2020, 38(3): 471-477. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD202003003.htm
    [17]
    权波, 杨博辰, 胡可奇, 等. 基于LSTM的船舶轨迹预测模型[J]. 计算机科学, 2018, 45(S2): 126-131. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202306006.htm

    QUAN B, YANG B C, HU K Q, et al. Prediction model of ship trajectory based on LSTM[J]. Computer Science, 2018, 45(S2): 126-131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202306006.htm
    [18]
    吴建华, 彭虎, 王辰, 等. 基于AIS通信量的水上交通事故检测方法[J]. 交通信息与安全, 2023, 41(5): 83-94. doi: 10.3963/j.jssn.1674-4861.2023.05.009

    WU J H, PENG H, WANG C, et al. A detection method for maritime traffic accidents based on AIS communication volume[J]. Journal of Transport Information and Safety, 2023, 41(5): 83-94. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.05.009
    [19]
    LI S, JIN X, XUAN Y, et al. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting[C]. 33rd Conference on Neural Information Processing Systems, Vancouver, Canada: NeurIPS, 2019.
    [20]
    ZHOU H, ZHANG S, PENG J, et al. Informer: beyond efficient transformer for long sequence time-series forecasting[C]. The 35th AAAI Conference on Artificial Intelligence. Online: AAAI, 2021.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views (462) PDF downloads(104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return