Citation: | WANG Lei, LI Ruijun, WANG Feiyin. An Assessment Model of Approach Risk Based on QAR Data and Mutual Information Method[J]. Journal of Transport Information and Safety, 2024, 42(4): 21-29. doi: 10.3963/j.jssn.1674-4861.2024.04.003 |
[1] |
王菲茵, 袁锦彤, 汪磊. 典型机型冲偏出跑道耦合故障模式及风险建模[J]. 交通信息与安全, 2023, 41(6): 42-50. doi: 10.3963/j.jssn.1674-4861.2023.06.005
WANG F Y, YUAN J T, WANG L. Coupling failure mode and risk modeling of typical aircrafts runway excursion[J]. Journal of Transport Information and Safety, 2023, 41(6): 42-50. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.06.005
|
[2] |
Federal Aviation Administration. Airplane flying handbook: FAA-H-8083-3C[S]. Oklahoma City: Skyhorse Publishing Inc., 2021.
|
[3] |
崔美叶. 进近阶段安全绩效低后果指标研究[D]. 天津: 中国民航大学, 2019.
CUI Y M. Research on safety performance low consequence indicators in approaching phase[D]. Tianjin: Civil Aviation University of China, 2019. (in Chinese)
|
[4] |
The International Air Transport Association. Interactive safety report[R/OL]. (2023-09-19)[2023-09-19].
|
[5] |
ZHANG X, MAHADEVAN S. Ensemble machine learning models for aviation incident risk prediction[J]. Decision Support Systems, 2019, 116: 48-63. doi: 10.1016/j.dss.2018.10.009
|
[6] |
孙瑞山, 杨绎煊, 汪磊. QAR数据在飞行安全评价中的应用[J]. 中国安全科学学报, 2015, 25(7): 87-92.
SUN R S, YANG Y X, WANG L. Study on flight safety evaluation based on QAR data[J]. China Safety Science Journal, 2015, 25(7): 87-92. (in Chinese)
|
[7] |
孙瑞山, 韩韶华. 基于孤立森林的航班进近超限事件预测[J]. 安全与环境学报, 2022, 22(4): 2010-2016.
SUN R S, HAN S H. Ultra limit incident prediction of flight approach based on isolation forest[J]. Journal of Safety and Environment, 2022, 22(4): 2010-2016. (in Chinese)
|
[8] |
王剑辉, 邓伟, 夏正洪, 等. 运输航空飞行安全风险评价方法[J]. 中国安全科学学报, 2019, 29(12): 110-116.
WANG J H, DENG W, XIA Z H, et al. Flight risk assessment method of transport aviation[J]. China Safety Science Journal, 2019, 29(12): 110-116. (in Chinese)
|
[9] |
XU L, SHANG J X, ZHENG L J, et al. Curvecluster+: curve clustering for hard landing pattern recognition and risk evaluation based on flight data[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(8): 12811-12821.
|
[10] |
谢嘉仪, 孙华波, 王纯, 等. 精细尺度下的不稳定进近影响因素分析[J]. 武汉大学学报(信息科学版), 2021, 46(8): 1201-1208.
XIE J Y, SUN H B, WANG C, et al. Analysis of influence factors for unstable approach in fine-grained scale[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1201-1208. (in Chinese)
|
[11] |
陈农田, 满永政, 李俊辉. 基于QAR数据的民机高高原进近着陆风险评估方法[J]. 北京航空航天大学学报, 2022, 24(6): 1-12.
CHEN N T, MAN Y Z, LI J H. Risk assessment method of civil aircraft approach and landing at high plateau based on QAR data[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 24(6): 1-12. (in Chinese)
|
[12] |
崔昊, 张申利, 任海军, 等. 基于卷积神经网络的不稳定进近研究与应用[J]. 航空计算技术, 2023, 53(5): 20-23, 28. doi: 10.3969/j.issn.1671-654X.2023.05.005
CUI H, ZHANG S L, REN H J, et al. Research and application of unstable approach based on convolution a neural network[J]. Aeronautical Computing Technique, 2023, 53(5): 20-23, 28. (in Chinese) doi: 10.3969/j.issn.1671-654X.2023.05.005
|
[13] |
俞力玲. 中国民航飞行品质监控回顾与展望[J]. 中国民用航空, 2012(8): 51-53.
YU L L. Review and prospect of carrying out FOQA in China[J]. China Civil Aviation, 2012(8): 51-53. (in Chinese)
|
[14] |
中国民用航空局飞行标准司. 飞行品质监控实施与管理: AC-121/135-FS-2012-45R1[S]. 北京: 中国民用航空局飞行标准司, 2015.
Civil Aviation Administration of China Flight Standards Division. Flight quality control implementation and management: AC-121/135-FS-2012-45R1[S]. Beijing: Civil Aviation Administration of China Flight Standards Division, 2015. (in Chinese)
|
[15] |
中国民用航空局. 运行阶段和地面阶段: AC-396-AS-2014-06 [S]. 北京: 中国民用航空局, 2014.
Civil Aviation Administration of China. Incident information reporting elements and examples: AC-396-13[S]. Beijing: Civil Aviation Administration of China, 2023. (in Chinese)
|
[16] |
The International Civil Aviation Organization. Safety management manual: Doc 9859[S]. Montréal: The International Civil Aviation Organization, 2018.
|
[17] |
宋昭, 马骋. 基于风险矩阵法与Borda序值法的航空公司运行风险评价讨论[J]. 民航学报, 2022, 6(5): 12-15, 11. doi: 10.3969/j.issn.2096-4994.2022.05.003
SONG Z, MA C, Airline operational risk assessment based on risk matrix method and borda sequence value method[J]. Journal of Civil Aviation, 2022, 6(5): 12-15, 11. (in Chinese) doi: 10.3969/j.issn.2096-4994.2022.05.003
|
[18] |
The International Air Transport Association. Runway safety[R/OL]. (2023-09-19)[2023-09-19].
|
[19] |
The International Air Transport Association. Loss of control in-flight[R/OL]. (2023-09-19)[2023-09-19].
|
[20] |
The International Air Transport Association. Controlled flight into terrain[R/OL]. (2023-09-19)[2023-09-19].
|
[21] |
CLAUDE E S. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379-423. doi: 10.1002/j.1538-7305.1948.tb01338.x
|
[22] |
STEUER R, KURTHS J, DAUB C O, et al. The mutual information: detecting and evaluating dependencies between variables[J]. Bioinformatics, 2002, 18(2): S231-S240.
|
[23] |
ZHOU Z P, YU X H, ZHU Z Y, et al. Development and application of a bayesian network-based model for systematically reducing safety risks in the commercial air transportation system[J]. Safety Science, 2023, 157(1): 105942.
|
[24] |
ZHAI C X, LAFFERTY J. A study of smoothing methods for language models applied to information retrieval[J]. ACM Transactions on Information Systems, 2004, 22(4): 179-214.
|
[25] |
CHEN, STANLEY F, GOODMAN J. An empirical study of smoothing techniques for language modeling[J]. Computer Speech and Language, 1999, 13(4): 359-394. doi: 10.1006/csla.1999.0128
|