Volume 42 Issue 4
Aug.  2024
Turn off MathJax
Article Contents
SHANG Ting, LIAN Guan, HUANG Xianlong, XIE Lei. A Driving Fatigue Model for Extra-long Tunnels Based on Multi-source Data[J]. Journal of Transport Information and Safety, 2024, 42(4): 30-41. doi: 10.3963/j.jssn.1674-4861.2024.04.004
Citation: SHANG Ting, LIAN Guan, HUANG Xianlong, XIE Lei. A Driving Fatigue Model for Extra-long Tunnels Based on Multi-source Data[J]. Journal of Transport Information and Safety, 2024, 42(4): 30-41. doi: 10.3963/j.jssn.1674-4861.2024.04.004

A Driving Fatigue Model for Extra-long Tunnels Based on Multi-source Data

doi: 10.3963/j.jssn.1674-4861.2024.04.004
  • Received Date: 2023-07-17
    Available Online: 2024-11-25
  • To investigate the evolution of driving fatigue in extra-long tunnels and its influencing factors, multi-source data from real-vehicle experiments are utilized to classify and identify driving fatigue, as well as to analyze the relationship between fatigue levels and influencing factors. Through significance tests of differences and correlation analysis, the percentage of eyelid closure over the pupil over time (PERCLOS) P80, the variable coefficient of pupil diameter, and acceleration are selected as key fatigue sensitivity indicators, and their changing patterns with accumulated driving time are examined. To construct a driving fatigue classification model, fatigue levels, based on the subjective fatigue detection results from the Karolinska sleepiness scale (KSS), are categorized into awake, semi-fatigued, and fatigued states. A multi-class classifier method is then employed to combine and classify these fatigue states. The grid-search method (GS) is utilized for parameter optimization, and the selected fatigue sensitivity indicators are used as input variables to establish a multi-class support vector machine model (GS-M-SVMs) for fatigue state classification. Following this, an ordinal multi-class Logistic model is developed to explore the relationship between driving fatigue levels and influencing factors in extra-long tunnels. The results indicate that the changing patterns of fatigue sensitivity indicators effectively capture the evolution of driving fatigue. The GS-M-SVMs model achieved a classification accuracy of 90.75%, indicating strong performance in fatigue level detection. Both accumulated driving time and tunnel length significantly influence driving fatigue levels, with regression coefficients of 2.634 and 0.395, respectively. This indicates that accumulated driving time is the primary factor contributing to increased fatigue in extra-long tunnels, while factors such as tunnel illumination and alignment do not significantly impact fatigue levels.

     

  • loading
  • [1]
    中华人民共和国交通运输部. 2022年交通运输行业发展统计公报[N]. 中国交通报, 2023-6-16(2).

    Ministry of Transport, People's Republic of China. 2022 Statistical bulletin on the development of the transportation Industry[N], China Communication News, 2023-6-16(2). (in Chinese)
    [2]
    倪娜, 杨少伟, 潘兵宏, 等. 终南山公路隧道交通事故特征及预防措施研究[J]. 现代隧道技术, 2018, 55(4): 25-32.

    NI N, YANG S W, PAN B H, et al. Traffic accident characteristics and prevention measures for the Zhongnanshan highway tunnel[J]. Modern Tunnelling Technology, 2018, 55(4): 25-32. (in Chinese)
    [3]
    黄发明. 基于"黑洞效应"的公路驾驶员视错觉改善方法试验研究[D]. 武汉: 武汉理工大学, 2014.

    HUANG F M. Experimental study on the improvement of optical illusion at highway tunnel entrance based on the"Black Hole Effect"[D]. Wuhan: Wuhan University of Technology, 2014. (in Chinese)
    [4]
    杜志刚, 梅家林, 倪玉丹, 等. 基于视觉需求的城市水下特长隧道光环境评价与优化综述[J]. 交通运输工程学报, 2020, 20(6): 48-61.

    DU Z G, MEI J L, NI Y D, et al. Review on evaluation and optimization of light environment of extra-long urban underwater tunnel based on visual demands[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 48-61. (in Chinese)
    [5]
    段儒禹. 长距离连续隧道群运营安全预测方法及措施研究[D]. 成都: 西南交通大学, 2021.

    DUAN R Y. Research on operation safety prediction method and measures of long-distance continuous tunnel group[D]. Chengdu: Southwest Jiaotong University, 2021. (in Chinese)
    [6]
    杨香丽. 单调环境下驾驶疲劳生成机理及预防对策[D]. 西安: 长安大学, 2020.

    YANG X L. The mechanism and preventive measures of driving fatigue under monotonous environment[D]. Xi'an: Chang'an University, 2020. (in Chinese)
    [7]
    ORON-GILAD T, RONEN A, SHINAR D. Alertness maintaining tasks(AMTs)while driving[J]. Accident Analysis & Prevention, 2008, 40: 851-860.
    [8]
    谢晓莉. 驾驶疲劳生成机理研究[D]. 北京: 北京工业大学, 2010.

    XIE X L. Study on driving fatigue formation mechanism[D]. Beijing: Beijing University of Technology, 2010. (in Chinese)
    [9]
    王连震. 机动车驾驶员疲劳累积特性及预防措施研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    WANG L Z. Characteristics and prevention measures of fatigue accumulation of vehicle drivers[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese)
    [10]
    李庆臣. 基于面部特征的疲劳驾驶检测系统设计[D]. 郑州: 郑州大学, 2019.

    LI Q C. Design of fatigue driving detection system based on facial feature[D]. Zhengzhou: Zhengzhou University, 2019. (in Chinese)
    [11]
    阎莹, 袁华智, 杨香丽, 等. 基于多源数据的单调道路环境与驾驶疲劳关系模型[J]. 中国公路学报, 2021, 34(5): 156-167. doi: 10.3969/j.issn.1001-7372.2021.05.015

    YAN Y, YUAN H Z, YANG X L, et al. Relationship model of monotonous road environment and driving fatigue based on multi-source data[J]. China Journal of Highway and Transport, 2021, 34(5): 156-167. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.05.015
    [12]
    蔡素贤, 杜超坎, 周思毅, 等. 基于车辆运行数据的疲劳驾驶状态检测[J]. 交通运输系统工程与信息, 2020, 20(4): 77-82.

    CAI S X, DU C K, ZHOU S Y, et al. Fatigue driving state detection based on vehicle running data[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(4): 77-82. (in Chinese)
    [13]
    白婧荣, 唐伯明, 孙宗元, 等. 毗邻互通立交特长隧道驾驶负荷研究[J]. 交通运输系统工程与信息, 2022, 22(1): 301-310.

    BAI J R, TANG B M, SUN Z Y, et al. On driving load of super-long tunnel adjacent to interchanges[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1): 301-310. (in Chinese)
    [14]
    朱兴林, 克然木·司马义, 姚亮, 等. 基于SSA-BP极端高温天气驾驶疲劳的检测[J]. 科学技术与工程, 2023, 23(3): 1254-1261. doi: 10.3969/j.issn.1671-1815.2023.03.044

    ZHU X L, SIMAYI K, YAO L, et al. Research on driving fatigue detection in extreme high temperature weather based on SSA-BP[J]. Science Technology and Engineering, 2023, 23(3): 1254-1261. (in Chinese) doi: 10.3969/j.issn.1671-1815.2023.03.044
    [15]
    梁波, 刘涛, 肖尧, 等. 特长隧道出口处交通标志与驾驶人感知关系试验[J]. 长安大学学报(自然科学版), 2020, 40(5): 48-55.

    LIANG B, LIU T, XIAO Y, et al. Experimental on relationship between traffic signs and drivers' perception at exit of extra-long tunnel[J]. Journal of Chang'an University(Natural Science Edition), 2020, 40(5): 48-55. (in Chinese)
    [16]
    LAI S K, CRAIG A. A critical review of the psychophysiology of driver fatigue[J]. Biological Psychology, 2001, 55(3): 173-194. doi: 10.1016/S0301-0511(00)00085-5
    [17]
    PHILLIPS R O. A review of definitions of fatigue - and a step towards a whole definition[J]. Transportation Research Part F: Psychology & Behaviour, 2015, 29: 48-56.
    [18]
    祝荣欣. 基于生理信号的驾驶疲劳检测研究综述[J]. 人类工效学, 2020, 26(4): 82-86.

    ZHU R X. A review of research on driving fatigue detection based on physiological signals[J]. Chinese Journal of Ergonomics, 2020, 26(04): 82-86. (in Chinese)
    [19]
    胥川, 裴赛君, 王雪松. 基于无侵入测量指标的个体差异化驾驶疲劳检测[J]. 中国公路学报, 2016, 29(10): 118-125. doi: 10.3969/j.issn.1001-7372.2016.10.013

    XU C, PEI S J, WANG X S. Driver drowsiness detection based on non-intrusive metrics considering individual difference[J]. China Journal of Highway and Transport, 2016, 29 (10): 118-125. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.10.013
    [20]
    付川云. 疲劳状态下驾驶人生理及眼动特征研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    FU C Y. Research on physiological and eye movement characteristics of driver under fatigue condition[D]. Harbin: Harbin Institute of Technology, 2011. (in Chinese)
    [21]
    秦洪懋, 刘志强, 汪澎. 基于多通道信息融合的疲劳驾驶行为分析研究[J]. 中国安全科学学报, 2011, 21(2): 115-120. doi: 10.3969/j.issn.1003-3033.2011.02.020

    QIN H M, LIU Z Q, WANG P. Research on drowsy driving behavior based on multi-channel information fusion[J]. China Safety Science Journal(CSSJ), 2011, 21 (2): 115-120. (in Chinese) doi: 10.3969/j.issn.1003-3033.2011.02.020
    [22]
    王雪松, 李飞虎. 基于驾驶模拟实验的眼部指标与疲劳分级[J]. 同济大学学报(自然科学版), 2015, 43(2): 226-231, 264.

    WANG X S, LI F H. Eye indicators and drowsy level analysis based on driving simulator[J]. Journal of Tongji University (Nature Science), 2015, 43(2): 226-231, 264. (in Chinese)
    [23]
    焦方通, 杜志刚, 王首硕, 等. 城市水下特长隧道出入口视觉及舒适性研究[J]. 中国公路学报, 2020, 33(6): 147-156.

    JIAO F T, DU Z G, WANG S S, et al. Visual characteristic and comfort at the entrance and exit of the extra-long urban underwater tunnel[J]. China Journal of Highway and Transport, 2020, 33(6): 147-156. (in Chinese)
    [24]
    李德才. 基于数据特征的汽车行驶速度状态与驾驶行为安全性研究[D]. 哈尔滨: 东北林业大学, 2021.

    LI D C. Research on vehicle speed and driving safety based on data characteristics[D]. Harbin: Northeast Forestry University, 2021(in Chinese)
    [25]
    朱承元, 张澈, 管建华. 基于改进支持向量机的空域交通态势识别方法[J]. 交通信息与安全, 2023, 41(2): 76-85. doi: 10.3963/j.jssn.1674-4861.2023.02.008

    ZHU C Y, ZHANG C, GUAN J H. A method for monitoring traffic state in the airspace based on an improved support vector machine[J]. Journal of Transport Information and Safety, 2023, 41(2): 76-85. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.02.008
    [26]
    付旻, 王炜, 王昊, 等. 多分类支持向量机在公交换乘识别中的应用[J]. 哈尔滨工业大学学报, 2018, 50(3): 26-32.

    FU M, WANG W, WANG H, et al. Application of multi-class support vector machine in public transit transfer recognition[J]. Journal of Harbin Institute of Technology, 2018, 50 (3): 26-32. (in Chinese)
    [27]
    李清毅, 周昊, 林阿平, 等. 基于网格搜索和支持向量机的灰熔点预测[J]. 浙江大学学报(工学版), 2011, 45(12): 2181-2187. doi: 10.3785/j.issn.1008-973X.2011.12.017

    LI Q Y, ZHOU H, LIN A P, et al. Prediction of gray melting point based on grid search and support vector machine[J]. Journal of Zhejiang University(Engineering Edition), 2011, 45(12): 2181-2187. (in Chinese) doi: 10.3785/j.issn.1008-973X.2011.12.017
    [28]
    叶飞, 苏恩杰, 梁晓明, 等. 公路隧道景观设计现状和思考[J]. 中国公路学报, 2022, 35(1): 23-37.

    YE F, SU E J, LIANG X M, et al. Review and thinking on landscape design of highway tunnel[J]. China Journal of Highway and Transport, 2022, 35(1): 23-37. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(8)

    Article Metrics

    Article views (73) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return