Citation: | SHANG Ting, LIAN Guan, HUANG Xianlong, XIE Lei. A Driving Fatigue Model for Extra-long Tunnels Based on Multi-source Data[J]. Journal of Transport Information and Safety, 2024, 42(4): 30-41. doi: 10.3963/j.jssn.1674-4861.2024.04.004 |
[1] |
中华人民共和国交通运输部. 2022年交通运输行业发展统计公报[N]. 中国交通报, 2023-6-16(2).
Ministry of Transport, People's Republic of China. 2022 Statistical bulletin on the development of the transportation Industry[N], China Communication News, 2023-6-16(2). (in Chinese)
|
[2] |
倪娜, 杨少伟, 潘兵宏, 等. 终南山公路隧道交通事故特征及预防措施研究[J]. 现代隧道技术, 2018, 55(4): 25-32.
NI N, YANG S W, PAN B H, et al. Traffic accident characteristics and prevention measures for the Zhongnanshan highway tunnel[J]. Modern Tunnelling Technology, 2018, 55(4): 25-32. (in Chinese)
|
[3] |
黄发明. 基于"黑洞效应"的公路驾驶员视错觉改善方法试验研究[D]. 武汉: 武汉理工大学, 2014.
HUANG F M. Experimental study on the improvement of optical illusion at highway tunnel entrance based on the"Black Hole Effect"[D]. Wuhan: Wuhan University of Technology, 2014. (in Chinese)
|
[4] |
杜志刚, 梅家林, 倪玉丹, 等. 基于视觉需求的城市水下特长隧道光环境评价与优化综述[J]. 交通运输工程学报, 2020, 20(6): 48-61.
DU Z G, MEI J L, NI Y D, et al. Review on evaluation and optimization of light environment of extra-long urban underwater tunnel based on visual demands[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 48-61. (in Chinese)
|
[5] |
段儒禹. 长距离连续隧道群运营安全预测方法及措施研究[D]. 成都: 西南交通大学, 2021.
DUAN R Y. Research on operation safety prediction method and measures of long-distance continuous tunnel group[D]. Chengdu: Southwest Jiaotong University, 2021. (in Chinese)
|
[6] |
杨香丽. 单调环境下驾驶疲劳生成机理及预防对策[D]. 西安: 长安大学, 2020.
YANG X L. The mechanism and preventive measures of driving fatigue under monotonous environment[D]. Xi'an: Chang'an University, 2020. (in Chinese)
|
[7] |
ORON-GILAD T, RONEN A, SHINAR D. Alertness maintaining tasks(AMTs)while driving[J]. Accident Analysis & Prevention, 2008, 40: 851-860.
|
[8] |
谢晓莉. 驾驶疲劳生成机理研究[D]. 北京: 北京工业大学, 2010.
XIE X L. Study on driving fatigue formation mechanism[D]. Beijing: Beijing University of Technology, 2010. (in Chinese)
|
[9] |
王连震. 机动车驾驶员疲劳累积特性及预防措施研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
WANG L Z. Characteristics and prevention measures of fatigue accumulation of vehicle drivers[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese)
|
[10] |
李庆臣. 基于面部特征的疲劳驾驶检测系统设计[D]. 郑州: 郑州大学, 2019.
LI Q C. Design of fatigue driving detection system based on facial feature[D]. Zhengzhou: Zhengzhou University, 2019. (in Chinese)
|
[11] |
阎莹, 袁华智, 杨香丽, 等. 基于多源数据的单调道路环境与驾驶疲劳关系模型[J]. 中国公路学报, 2021, 34(5): 156-167. doi: 10.3969/j.issn.1001-7372.2021.05.015
YAN Y, YUAN H Z, YANG X L, et al. Relationship model of monotonous road environment and driving fatigue based on multi-source data[J]. China Journal of Highway and Transport, 2021, 34(5): 156-167. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.05.015
|
[12] |
蔡素贤, 杜超坎, 周思毅, 等. 基于车辆运行数据的疲劳驾驶状态检测[J]. 交通运输系统工程与信息, 2020, 20(4): 77-82.
CAI S X, DU C K, ZHOU S Y, et al. Fatigue driving state detection based on vehicle running data[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(4): 77-82. (in Chinese)
|
[13] |
白婧荣, 唐伯明, 孙宗元, 等. 毗邻互通立交特长隧道驾驶负荷研究[J]. 交通运输系统工程与信息, 2022, 22(1): 301-310.
BAI J R, TANG B M, SUN Z Y, et al. On driving load of super-long tunnel adjacent to interchanges[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1): 301-310. (in Chinese)
|
[14] |
朱兴林, 克然木·司马义, 姚亮, 等. 基于SSA-BP极端高温天气驾驶疲劳的检测[J]. 科学技术与工程, 2023, 23(3): 1254-1261. doi: 10.3969/j.issn.1671-1815.2023.03.044
ZHU X L, SIMAYI K, YAO L, et al. Research on driving fatigue detection in extreme high temperature weather based on SSA-BP[J]. Science Technology and Engineering, 2023, 23(3): 1254-1261. (in Chinese) doi: 10.3969/j.issn.1671-1815.2023.03.044
|
[15] |
梁波, 刘涛, 肖尧, 等. 特长隧道出口处交通标志与驾驶人感知关系试验[J]. 长安大学学报(自然科学版), 2020, 40(5): 48-55.
LIANG B, LIU T, XIAO Y, et al. Experimental on relationship between traffic signs and drivers' perception at exit of extra-long tunnel[J]. Journal of Chang'an University(Natural Science Edition), 2020, 40(5): 48-55. (in Chinese)
|
[16] |
LAI S K, CRAIG A. A critical review of the psychophysiology of driver fatigue[J]. Biological Psychology, 2001, 55(3): 173-194. doi: 10.1016/S0301-0511(00)00085-5
|
[17] |
PHILLIPS R O. A review of definitions of fatigue - and a step towards a whole definition[J]. Transportation Research Part F: Psychology & Behaviour, 2015, 29: 48-56.
|
[18] |
祝荣欣. 基于生理信号的驾驶疲劳检测研究综述[J]. 人类工效学, 2020, 26(4): 82-86.
ZHU R X. A review of research on driving fatigue detection based on physiological signals[J]. Chinese Journal of Ergonomics, 2020, 26(04): 82-86. (in Chinese)
|
[19] |
胥川, 裴赛君, 王雪松. 基于无侵入测量指标的个体差异化驾驶疲劳检测[J]. 中国公路学报, 2016, 29(10): 118-125. doi: 10.3969/j.issn.1001-7372.2016.10.013
XU C, PEI S J, WANG X S. Driver drowsiness detection based on non-intrusive metrics considering individual difference[J]. China Journal of Highway and Transport, 2016, 29 (10): 118-125. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.10.013
|
[20] |
付川云. 疲劳状态下驾驶人生理及眼动特征研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
FU C Y. Research on physiological and eye movement characteristics of driver under fatigue condition[D]. Harbin: Harbin Institute of Technology, 2011. (in Chinese)
|
[21] |
秦洪懋, 刘志强, 汪澎. 基于多通道信息融合的疲劳驾驶行为分析研究[J]. 中国安全科学学报, 2011, 21(2): 115-120. doi: 10.3969/j.issn.1003-3033.2011.02.020
QIN H M, LIU Z Q, WANG P. Research on drowsy driving behavior based on multi-channel information fusion[J]. China Safety Science Journal(CSSJ), 2011, 21 (2): 115-120. (in Chinese) doi: 10.3969/j.issn.1003-3033.2011.02.020
|
[22] |
王雪松, 李飞虎. 基于驾驶模拟实验的眼部指标与疲劳分级[J]. 同济大学学报(自然科学版), 2015, 43(2): 226-231, 264.
WANG X S, LI F H. Eye indicators and drowsy level analysis based on driving simulator[J]. Journal of Tongji University (Nature Science), 2015, 43(2): 226-231, 264. (in Chinese)
|
[23] |
焦方通, 杜志刚, 王首硕, 等. 城市水下特长隧道出入口视觉及舒适性研究[J]. 中国公路学报, 2020, 33(6): 147-156.
JIAO F T, DU Z G, WANG S S, et al. Visual characteristic and comfort at the entrance and exit of the extra-long urban underwater tunnel[J]. China Journal of Highway and Transport, 2020, 33(6): 147-156. (in Chinese)
|
[24] |
李德才. 基于数据特征的汽车行驶速度状态与驾驶行为安全性研究[D]. 哈尔滨: 东北林业大学, 2021.
LI D C. Research on vehicle speed and driving safety based on data characteristics[D]. Harbin: Northeast Forestry University, 2021(in Chinese)
|
[25] |
朱承元, 张澈, 管建华. 基于改进支持向量机的空域交通态势识别方法[J]. 交通信息与安全, 2023, 41(2): 76-85. doi: 10.3963/j.jssn.1674-4861.2023.02.008
ZHU C Y, ZHANG C, GUAN J H. A method for monitoring traffic state in the airspace based on an improved support vector machine[J]. Journal of Transport Information and Safety, 2023, 41(2): 76-85. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.02.008
|
[26] |
付旻, 王炜, 王昊, 等. 多分类支持向量机在公交换乘识别中的应用[J]. 哈尔滨工业大学学报, 2018, 50(3): 26-32.
FU M, WANG W, WANG H, et al. Application of multi-class support vector machine in public transit transfer recognition[J]. Journal of Harbin Institute of Technology, 2018, 50 (3): 26-32. (in Chinese)
|
[27] |
李清毅, 周昊, 林阿平, 等. 基于网格搜索和支持向量机的灰熔点预测[J]. 浙江大学学报(工学版), 2011, 45(12): 2181-2187. doi: 10.3785/j.issn.1008-973X.2011.12.017
LI Q Y, ZHOU H, LIN A P, et al. Prediction of gray melting point based on grid search and support vector machine[J]. Journal of Zhejiang University(Engineering Edition), 2011, 45(12): 2181-2187. (in Chinese) doi: 10.3785/j.issn.1008-973X.2011.12.017
|
[28] |
叶飞, 苏恩杰, 梁晓明, 等. 公路隧道景观设计现状和思考[J]. 中国公路学报, 2022, 35(1): 23-37.
YE F, SU E J, LIANG X M, et al. Review and thinking on landscape design of highway tunnel[J]. China Journal of Highway and Transport, 2022, 35(1): 23-37. (in Chinese)
|