Citation: | LI Chun, ZHANG Cunbao, CHEN Feng, FU Dingjun. An Expressway Traffic Flow Prediction Method Considering Inter-Lane Differences and Upstream and Downstream Cross-Section Correlations[J]. Journal of Transport Information and Safety, 2024, 42(4): 102-109. doi: 10.3963/j.jssn.1674-4861.2024.04.011 |
[1] |
YANG B, SUN S, LI J, et al. Traffic flow prediction using LSTM with feature enhancement[J]. Neurocomputing, 2019, 332: 320-327. doi: 10.1016/j.neucom.2018.12.016
|
[2] |
王殿海, 蔡正义, 曾佳棋, 等. 城市交通控制中的数据采集研究综述[J]. 交通运输系统工程与信息, 2020, 20(3): 95-102.
WANG D H, CAI Z Y, ZENG J Q, et al. Review of traffic data collection research on urban traffic control[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(3): 95-102. (in Chinese)
|
[3] |
LI M, LI M, LIU B, et al. Spatio-temporal traffic flow prediction based on coordinated attention[J]. Sustainability, 2022, 14 (12): 7394. doi: 10.3390/su14127394
|
[4] |
陈如清, 李嘉春, 俞金寿. 基于FWADE-ELM的短时交通流预测方法[J]. 控制与决策, 2021, 36(4): 925-932.
CHEN R Q, LI J C, YU J S. Short-term traffic flow forecasting based on hybrid FWADE-ELM[J]. Control and Decision, 2021, 36(4): 925-932. (in Chinese)
|
[5] |
陆文琦, 芮一康, 冉斌, 等. 智能网联环境下基于混合深度学习的交通流预测模型[J]. 交通运输系统工程与信息, 2020, 20(3): 47-53.
LU W Q, RUI Y K, RAN B, et al. Traffic flow prediction based on hybrid deep learning under connected and automated vehicle environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(3): 47-53. (in Chinese)
|
[6] |
赵恒辉, 黄德启, 曾蓉, 等. 基于时空注意力Bi-LSTM模型的短时交通流预测[J]. 计算机仿真, 2022, 39(9): 177-181.
ZHAO H H, HUANG D Q, ZENG R, et al. Short term traffic flow prediction based on spatial-temporal attention Bi-LSTM model[J]. Computer Simulation, 2022, 39(9): 177-181. (in Chinese)
|
[7] |
LU S, ZHANG Q, CHEN G, et al. A combined method for short-term traffic flow prediction based on recurrent neural network[J]. Alexandria Engineering Journal, 2021, 60(1): 87-94. doi: 10.1016/j.aej.2020.06.008
|
[8] |
陈宇, 王炜, 华雪东, 等. 基于递归框架的高速公路交通流量实时预测方法[J]. 交通信息与安全, 2023, 41(1): 124-131. doi: 10.3963/j.jssn.1674-4861.2023.01.013
CHEN Y, WANG W, HUA X D, et al. A recursive framework-based approach for real-time traffic flow[J]. Journal of Transport Information and Safety, 2023, 41(1): 124-131. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.01.013
|
[9] |
MA D, SONG X, LI P. Daily traffic flow forecasting through a contextual convolutional recurrent neural network modeling inter-and intra-day traffic patterns[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(5): 2627-2636.
|
[10] |
温惠英, 张东冉, 陆思园. GA-LSTM模型在高速公路交通流预测中的应用[J]. 哈尔滨工业大学学报, 2019, 51(9): 81-87.
WEN H Y, ZHANG D R, LU S Y. Application of GA-LSTM model in highway traffic flow prediction[J]. Journal of Harbin Institute of Technology, 2019, 51(9): 81-87. (in Chinese)
|
[11] |
王殿海, 谢瑞, 蔡正义. 基于最优汇集时间间隔的城市间断交通流预测[J]. 浙江大学学报(工学版), 2023, 57(8): 1607-1617.
WANG D H, XIE R, CAI Z Y. Prediction of urban interrupted traffic flow based on optimal convergence time interval[J]. Journal of Zhejiang University(Engineering Science), 2023, 57(8): 1607-1617. (in Chinese)
|
[12] |
ZHENG Y, LI W, ZHENG W, et al. Lane-level heterogeneous traffic flow prediction: a spatiotemporal attention-based encoder-decoder model[J]. IEEE Intelligent Transportation Systems Magazine, 2023, 15(3): 51-67.
|
[13] |
ZHOU J, SHUAI S, WANG L, et al. Lane-level traffic flow prediction with heterogeneous data and dynamic graphs[J]. Applied Sciences, 2022, 12(11): 5340.
|
[14] |
侯越, 崔菡珂, 邓志远. 横向相关性及参数影响下的车道级交通预测[J]. 公路交通科技, 2022, 39(5): 122-130.
HOU Y, CUI H K, DENG Z Y. Lane level traffic prediction under influence of lateral correlation and parameters[J]. Journal of Highway and Transportation Research and Development, 2022, 39(5): 122-130. (in Chinese)
|
[15] |
侯越, 郑鑫, 韩成艳. 一种融合纵横时空特征的交通流预测方法[J]. 西安电子科技大学学报, 2023, 50(5): 65-74.
HOU Y, ZHENG X, HAN C Y. Traffic flow prediction method for integrating longitudinal and horizontal spatiotemporal characteristics[J]. Journal of Xidian University, 2023, 50 (5): 65-74. (in Chinese)
|
[16] |
周军勇, 石雪飞, 阮欣, 等. 高速公路分车道荷载差异及其响应特性[J]. 同济大学学报(自然科学版), 2018, 46(4): 458-464.
ZHOU J Y, SHI X F, RUAN X, et al. Land load disparities and their loading effect characteristics of freeway[J]. Journal of Tongji University(Natural Science), 2018, 46(4): 458-464. (in Chinese)
|
[17] |
阮欣, 周可攀, 周军勇. 某八车道高速公路车流特性及荷载效应[J]. 同济大学学报(自然科学版), 2015, 43(4): 555-561.
RUAN X, ZHOU K P, ZHOU J Y. Vehicle flow characteristics and load effect of a eight-lane highway[J]. Journal of Tongji University(Natural Science), 2015, 43(4): 555-561. (in Chinese)
|
[18] |
张惠玲, 奚邦顺. 老年人过街比例与信号交叉口行人过街速度设置研究[J]. 交通运输系统工程与信息, 2021, 21 (1): 214-220.
ZHANG H L, XI B S. Signalized intersection pedestrian crossing design speed and ederly pedestrian proportion relationship study[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(1): 214-220. (in Chinese)
|
[19] |
SINGH N K, TANGIRALAA K, VANAJAKSHI L D. A multivariate analysis framework for vehicle detection from loop data under heterogeneous and less lane disciplined traffic[J]. IEEE Access, 2021, (9): 143580-143591.
|
[20] |
魏晓悦, 靳春玲, 贡力, 等. 基于PCA-改进RBF神经网络模型的铁路隧道突水风险评价[J]. 铁道科学与工程学报, 2021, 18(3): 794-802.
WEI X Y, JIN C L, GONG L, et al. Risk evaluation of railway tunnel water inrush based on PCA-improved RBF neural network model[J]. Journal of Railway Science and Engineering, 2021, 18(3): 794-802. (in Chinese)
|
[21] |
ARORA S, KESHARI A K. Pattern recognition of water quality variance in Yamuna River(India)using hierarchical agglomerative cluster and principal component analyses[J]. Environmental Monitoring and Assessment, 2021, 193: 494.
|
[22] |
李岩, 王泰州, 徐金华, 等. 面向动态交通分配的交通需求深度学习预测方法[J]. 交通运输系统工程与信息, 2024, 24(1): 115-123.
LI Y, WANG T Z, XU J H, et al. Traffic demand prediction method based on deep learning for dynamic traffic assignment[J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24(1): 115-123. (in Chinese)
|
[23] |
张璐, 冯东明, 吴刚. 基于LSTM网络的车辆动态荷载识别方法[J]. 东南大学学报(自然科学版), 2023, 53(2): 187-192.
ZHANG L, FENG D M, WU G. Dynamic vehicle load identification method based on LSTM network[J]. Journal of Southeast University(Natural Science Edition), 2023, 53 (2): 187-192. (in Chinese)
|