Issue 4
Aug.  2017
Turn off MathJax
Article Contents
WU Xuexin, LING Shuai, LI Geng. A Simulation Study of Departure Time Selection in Dual-modal with Impacts of Vehicle Restriction Policies Based on Reinforcement Learning[J]. Journal of Transport Information and Safety, 2017, 35(4): 52-62. doi: 10.3963/j.issn.1674-4861.2017.04.007
Citation: WU Xuexin, LING Shuai, LI Geng. A Simulation Study of Departure Time Selection in Dual-modal with Impacts of Vehicle Restriction Policies Based on Reinforcement Learning[J]. Journal of Transport Information and Safety, 2017, 35(4): 52-62. doi: 10.3963/j.issn.1674-4861.2017.04.007

A Simulation Study of Departure Time Selection in Dual-modal with Impacts of Vehicle Restriction Policies Based on Reinforcement Learning

doi: 10.3963/j.issn.1674-4861.2017.04.007
  • Publish Date: 2017-08-28
  • Combining multi-agent technology with a reinforcement learning model, a computer simulation model of travel modes and choice of departure time of commuters in peak hours is established.In a simulation, travel choice behaviors of commuters are studied with the consideration of impacts of vehicle restriction policies, and the formation of commuting equilibrium in peak periods is also reproduced.Based on simulation results, the effects of different measures for improving public transportations are analyzed.The results show that the number of commuters by bus increases by 18% after the implementation of restriction policies, which eases congestions in peak periods to a certain extent.Meanwhile, the probabilities that commuters travel by bus in unrestricted days become smaller, which means the effects of adopting restriction policies exclusively are fairly limited.Under the influences of restriction policies, if departure frequencies of public transport increase, the number of commuters travel by bus increases by 17.5%, and drivers′ waiting time in congestions decreases by 85%, which can effectively improve the traffic situations.Compared with that, reducing ticket price of public transport is less effective.The multi-agent approach applied in this study shows the richness in individual behaviors which can be realized intuitively and conveniently.It also has advantages in describing interactions between individuals and traffic systems, which provides an effective way to explore formation and evolution of complicated traffic phenomena.

     

  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (390) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return