Citation: | LIANG Quan, WENG Jiancheng, HU Juanjuan, HAN Bing. Travel Destination Prediction of Public Transport Commuters by Integrating XGBoost Algorithm and Graph Adjustment Method[J]. Journal of Transport Information and Safety, 2021, 39(4): 68-76. doi: 10.3963/j.jssn.1674-4861.2021.04.009 |
[1] |
北京交通发展研究院. 2019年北京市交通发展年度报告[R]. 北京: 北京交通发展研究院, 2019.
Beijing Transport Institute. 2019 Beijing transport annual report[R]. Beijing: Beijing Transport Institute, 2019. (in Chinese)
|
[2] |
呙娟. 基于公交数据的乘客出行特征分析[D]. 广州: 华南理工大学, 2016.
GUO Juan. The travel characteristics analysis of passengers based on the bus data[D]. Guangzhou: South China University of Technology, 2016. (in Chinese)
|
[3] |
NEVEN A, BRAEKERS K, DECLERCQ K, et al. Assessing the impact of different policy decisions on the resource requirements of a demand responsive transport system for persons with disabilities[J]. Transport Policy, 2015(44): 48-57. http://www.researchgate.net/profile/An_Neven/publication/280083315_Assessing_the_impact_of_different_policy_decisions_on_the_resource_requirements_of_a_Demand_Responsive_Transport_system_for_persons_with_disabilities/links/55a74d1b08ae51639c577186.pdf
|
[4] |
LEE W. Assessing the impacts of job and worker relocation policies on commuting[J]. Applied Geography, 2012(34): 606-613. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0143622812000252&originContentFamily=serial&_origin=article&_ts=1479545025&md5=ac2ea32efd07791bc11eb317dfeb8e97
|
[5] |
CASTIGLIONE J, FREEDMAN J. A systematic investigation of variability due to random simulation error in an activity-based micro simulation forecasting model[C]. 82ndTransportation Research Board Annual Meeting, Washington, D. C., USA: Transportation Research Board, 2009.
|
[6] |
郑劲松. 基于数据仓库的城市轨道交通客流分析系统研究[D]. 长沙: 中南大学, 2009.
ZHENG Jingsong. Research of urban rail transit passenger flow analysis system based on data warehouse[D]. Changsha: Central South University, 2009. (in Chinese)
|
[7] |
靳佳. 基于IC卡的北京市公交出行特征分析[D]. 北京: 首都师范大学, 2013.
JIN Jia. An analysis of the characteristics of Beijing's public transport trips based on IC cards[D]. Beijing: Capital Normal University, 2013. (in Chinese)
|
[8] |
郭婕. 公交IC卡通勤乘客OD确定方法研究[D]. 南京: 东南大学, 2006.
GUO Jie. Research on the method of determining the OD of passengers in bus IC card[D]. Nanjing: Southeast University, 2006. (in Chinese)
|
[9] |
VELDHUISEN J, TIMMERMANS H, PONE L. Micro-simulation of activity-travel patterns and traffic flows: validation tests and an investigation of monte carlo error[C]. 79th Transportation Research Board Annual Meeting, Washington, D. C., USA: Transportation Research Board, 2000.
|
[10] |
沈金星, 李洋, 王逸戍. 居民通勤出行的定制公交需求特征研究[J]. 物流工程与管理, 2017, 39(9): 133-134. doi: 10.3969/j.issn.1674-4993.2017.09.046
SHEN Jinxing, LI Yang, WANG Yishu. Study on the characteristics of customized bus demand for commuter trip[J]. Logistics Engineering and Management, 2017, 39(9): 133-134. (in Chinese) doi: 10.3969/j.issn.1674-4993.2017.09.046
|
[11] |
TAO L, CEDER A A. Analysis of a new public-transport service concept: customized bus in China[J]. Transport Policy, 2015(39): 63-76. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0967070X15000256&originContentFamily=serial&_origin=article&_ts=1495763187&md5=0cebc5b3c021ed7e8059da16041da5d2
|
[12] |
QUAN H, PHONG H N, TOBIASÅ, et al. Implementation of a flow map demonstrator for analyzing commuting and migration flow statistics data[J]. Procedia Social and Behavioral Sciences, 2011(21): 157-166. http://pdfs.semanticscholar.org/4514/1160d6ecec5f21aef39ed4ff61dc639f2c5b.pdf
|
[13] |
梁泉, 翁剑成, 周伟, 等. 基于关联规则的公共交通通勤稳定性人群辨识[J]. 吉林大学学报(工学版), 2019, 49(5): 1484-1491. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201905013.htm
LIANG Quan, WENG Jiancheng, ZHOU Wei, et al. Stability identification of public transport commute passengers based on association rules[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1484-1491. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201905013.htm
|
[14] |
梁泉, 翁剑成, 周伟, 等. 面向个体的分类型公交通勤行为影响因素研究[J]. 武汉理工大学学报(交通科学与工程版), 2019, 43(5): 855-859. doi: 10.3963/j.issn.2095-3844.2019.05.013
LIANG Quan, WENG Jiancheng, ZHOU Wei, et al. Study on influencing factors of individual-oriented commuting behavior with different types of public transportation[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2019, 43(5): 855-859. (in Chinese) doi: 10.3963/j.issn.2095-3844.2019.05.013
|
[15] |
万志超. 基于XGBoost的不平衡分类方法研究[D]. 合肥: 安徽大学, 2018.
WAN Zhichao. Research on imbalanced classification method based on XGBoost[D]. Hefei: Anhui University, 2018. (in Chinese)
|
[16] |
施国良, 景志刚, 范丽伟. 基于Lasso和Xgboost的油价预测研究[J]. 工业技术经济, 2018, 37(7): 31-37. doi: 10.3969/j.issn.1004-910X.2018.07.004
SHI Guoliang, JIANG Zhigang, FAN Liwei, et al. Research on the Original Oil Price Prediction Based on Lasso-Xgboost Combination Method[J]. Journal of Industrial Technological Economics, 2018, 37(7): 31-37. (in Chinese) doi: 10.3969/j.issn.1004-910X.2018.07.004
|
[17] |
CHEN T, GUESTRIN C. Xgboost: A scalable tree boosting system[C]. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco: ACMDigital Library, 2016.
|
[18] |
刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3): 582-600. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201603009.htm
LIU Qiao, LI Yang, DUAN Hong, et al. Knowledge graph construction techniques[J]. Journal of Computer Research and Development, 2016, 53(3): 582-600. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201603009.htm
|
[19] |
梁泉. 基于个体出行图谱的公共交通通勤出行行为预测方法研究[D]. 北京: 北京工业大学, 2019.
LIANG Quan. Research on travel behavior forecasting method of public transport commuters based on individual travel graphs[D]. Beijing: Beijing University of Technology, 2019. (in Chinese)
|
[20] |
翁剑成, 王昌, 王月玥, 等. 基于个体出行数据的公共交通出行链提取方法[J]. 交通运输系统工程与信息, 2017, 17(3): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201703011.htm
WENG Jiancheng, WANG Chang, WANG Yueyue, et al. Extraction method of public transit trip chains based on the individual riders'data[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(3): 67-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201703011.htm
|
[21] |
钟颖, 邵毅明, 吴文文, 等. 基于XGBoost的短时交通流预测模型[J]. 科学技术与工程, 2019, 19(30): 337-342. doi: 10.3969/j.issn.1671-1815.2019.30.050
ZHONG Ying, SHAO Yiming, WU Wenwen, et al. Short-term traffic flow prediction model based on XGBoost[J]. Science Technology and Engineering, 2019, 19(30): 337-342. (in Chinese) doi: 10.3969/j.issn.1671-1815.2019.30.050
|
[22] |
MITCHELL R, FRANK E. Accelerating the XGBoost algorithm using GPU computing[D]. Waikato, New Zealand: University of Waikato, 2017.
|
[23] |
LIANG Quan, WENG Jiancheng, ZHOU Wei, et al. Individual travel behavior modeling of public transport passenger based on graph construction[J]. Journal of Advanced Transportation, 2018(2018): 1-13.
|
[24] |
荣建, 翁剑成. 基于多源数据的公共交通通勤特征提取技术[R]. 北京: 北京工业大学, 2014.
RONG Jian, WENG Jiancheng. Commuter feature extraction technology of public transport based on multi-source data[R]. Beijing: Beijing University of Technology, 2014. (in Chinese)
|