Volume 40 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
LONG Yan, HUANG Jianling1, ZHAO Xiaohua, LI Zhenlong. Development and Classification of Lane-changing Graph Based on Multi-view Collaborative and Interactive Techniques[J]. Journal of Transport Information and Safety, 2022, 40(1): 106-115. doi: 10.3963/j.jssn.1674-4861.2022.01.013
Citation: LONG Yan, HUANG Jianling1, ZHAO Xiaohua, LI Zhenlong. Development and Classification of Lane-changing Graph Based on Multi-view Collaborative and Interactive Techniques[J]. Journal of Transport Information and Safety, 2022, 40(1): 106-115. doi: 10.3963/j.jssn.1674-4861.2022.01.013

Development and Classification of Lane-changing Graph Based on Multi-view Collaborative and Interactive Techniques

doi: 10.3963/j.jssn.1674-4861.2022.01.013
  • Received Date: 2021-09-20
    Available Online: 2022-03-31
  • This paper aims to intuitively display the details of drivers' visual perception and related driving behavior in the lane-changing process by developing a multi-view collaborative visualization-based lane-changing graph. Specifically, driving behavior data related to lane-changing process are extracted from a simulated expressway, which is carried out by a driving simulator. The lane-changing graph is developed by coordinating parallel coordinates, count diagram, and bar chart with lane-changing trajectory. Following the analysis of 40 data sets of lane-changing behavior using the multi-view technique and the criteria for qualified lane-changing area, the lane-changing behavior is then classified into"Qualified""Barely Qualified", and"Unqualified". Meanwhile, the reasons of the unqualified lane-changing processes are also studied. The results show that the proportions of"Qualified""Barely Qualified", and"Unqualified"processes are 10.00%, 12.50%, and 77.50% respectively. The average standard deviations of the turning speed of the steering wheel, acceleration, and lateral acceleration observed over the unqualified processes (6.57°; 0.91 m/s2;0.41 m/s2) are larger than those observed over the qualified processes (4.55°; 0.34 m/s2;0.17 m/s2). The reasons for showing unqualified processes are mainly twofold: excessive lateral acceleration due to a large turning angle of the steering wheel and excessive change of longitudinal acceleration due to inappropriate operation of the gas panel. In general, the lane-changing graph can analyze and diagnose the lane-changing process accurately, which can provide supports for optimizing driver behavior in the lane-changing process.

     

  • loading
  • [1]
    谷新平, 韩云鹏, 于俊甫. 基于决策机理与支持向量机的车辆换道决策模型[J]. 哈尔滨工业大学学报, 2020, 52(7): 111-121. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202007016.htm

    GU X P, HAN Y P, YU J F. Vehicle lane-changing decision model based on decision mechanism and support vector machine[J]. Journal of Harbin Institute of Technology, 2020, 52 (7): 111-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202007016.htm
    [2]
    陆建, 李英帅. 车辆换道行为建模的回顾与展望[J]. 交通运输系统工程与信息, 2017, 17(4): 48-55. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201704008.htm

    LU J, LI Y S. Review and outlook of modeling of lane changing behavior[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(4): 48-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201704008.htm
    [3]
    KUMAR P, PERROLLAZ M, LEFEVRE S, et al. Learning-based approach for online lane change intention prediction[C]. 2013 IEEE Intelligent Vehicles Symposium(IV), Gold Coast, Australia: IEEE, 2013.
    [4]
    MANDALIA H M, SALVUCCI D D. Using support vector machines for lane-change detection[C]. The Human Factors & Ergonomics Society Annual Meeting, Orlando, FL, United states: Human Factors an Ergonomics Society Inc, 2005.
    [5]
    LIU L, XU G, SONG Z. Driver lane changing behavior analysis based on parallel Bayesian networks[C]. 6th International Conference on Natural Computation, Yantai, China: IEEE, 2010.
    [6]
    KUGE N, YAMAMURA T, SHIMOYAMA O, et al. A driver behavior recognition method based on a driver model framework[C]. SAE 2000 World Congres, Detroit, MI, United States: SAE International, 2000.
    [7]
    PENTLAND A, LIU A. Modeling and prediction of human behavior[J]. Neural Computation, 1999(11): 229-242.
    [8]
    王一男. 基于隐马尔科夫模型的驾驶员换道驾驶意图识别方法研究[D]. 长春: 吉林大学, 2020.

    WANG Y N. Drivers' lane changing intention recognition method research based on Hidden Markov Model[D]. Changchun: Jilin University, 2020. (in Chinese)
    [9]
    宗长富, 王畅, 何磊, 等. 基于双层隐式马尔科夫模型的驾驶意图辨识[J]. 汽车工程, 2011, 33(08): 701-706. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201108013.htm

    ZONG C F, WANG C, HE L, et al. Driving intention recognition based on double-layer HMM[J]. Automoltive Engineering, 2011, 33(8): 701-706. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201108013.htm
    [10]
    胡少伟. 基于驾驶意图识别的主动换道系统研究[D]. 北京: 清华大学, 2019.

    HU S W. Research on active lane changeSystem based on driving intention recognition[D]. Beijing: Tsinghua University, 2019. (in Chinese)
    [11]
    PENG J, GUO Y, FU R, et al. Multi-parameter prediction of drivers' lane-changing behaviour with neural network model[J]. Applied Ergonomics, 2015(50): 207-217.
    [12]
    WIRTHMUELLER F, KLIMKE M, SCHLECHTRIEMEN J, et al. Predicting the time until a vehicle changes the lane using LSTM-based Recurrent Neural Networks[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 2357-2364. doi: 10.1109/LRA.2021.3058930
    [13]
    GEBERT P, ROITBERG A, HAURILET M, et al. End-to-end prediction of driver intention using 3D convolutional neural networks[C]. 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France: IEEE, 2019.
    [14]
    GIPPS P. G. A model for the structure of lane-changing decisions[J]. Transportation Research Part B: Methodological. 1986, 20(5): 403-414. doi: 10.1016/0191-2615(86)90012-3
    [15]
    HUNT G J, LYONS D G. Modelling dual carriageway lane changing using neural networks[J]. Transportation Research Part C: Emerging Technologies, 1994, 2(4): 231-245. doi: 10.1016/0968-090X(94)90012-4
    [16]
    房哲哲. 基于深度学习的换道行为建模与分析[D]. 北京: 北京交通大学, 2018.

    FANG Z Z. Modeling and analysis of the lane-changing behavior through deep learning[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese)
    [17]
    MORIDPOUR S, SARVI M, ROSE G, et al. Lane-changing decision model for heavy vehicle drivers[J]. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2012, 16(1): 24-35. doi: 10.1080/15472450.2012.639640
    [18]
    许伦辉, 倪艳明, 罗强, 等. 基于最小安全距离的车辆换道模型研究[J]. 广西师范大学学报(自然科学版), 2011, 29 (4): 1-6. doi: 10.3969/j.issn.1001-6600.2011.04.001

    XU L H, NI Y M, LUO Q, et al. Lane-changing model based on minimum safety distance[J]. Journal of Guangxi Normal University: Natural Science Edition, 2011, 29(4): 1-6. (in Chinese) doi: 10.3969/j.issn.1001-6600.2011.04.001
    [19]
    刘晨强. 车辆轨迹数据与换道行为特性研究[D]. 北京: 北京工业大学, 2018.

    LIU C Q. Research on vehicle trajectory the characteristics of lane-changing behavior[D]. Beijing: Beijing University of Technology, 2018. (in Chinese)
    [20]
    伍毅平. 生态驾驶行为特征甄别及反馈优化方法研究[D]. 北京: 北京工业大学, 2017.

    WU Y P. Research on eco-driving behavior characteristics identification and feedback optimization method[D]. Beijing: Beijing University of Technology, 2017. (in Chinese)
    [21]
    WANG W, ZHANG W, GUO H, et al. A safety-based approaching behavioural model with various driving characteristics[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(6): 1202-1214. doi: 10.1016/j.trc.2011.02.002
    [22]
    刘畅, 亓航, 陈晨. 基于安全驾驶行为风险特征的图谱表达方法[J]. 交通工程, 2019, 19(6): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DLJA201906003.htm

    LIU C, QI H, CHEN C. Graph expression method based on risk characteristics of safedriving behavior[J]. Journal of Transportation Engineering, 2019, 19(6): 13-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLJA201906003.htm
    [23]
    伍毅平, 赵晓华. 基于图谱的个体驾驶行为特征描述方法研究[J]. 交通工程, 2018, 18(1): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DLJA201801003.htm

    WU Y P, ZHAO X H. A graph based method to describe individual driving behavior[J]. Journal of Transportation Engineering, 2018, 18(1): 13-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLJA201801003.htm
    [24]
    郑淑欣. 基于循环神经网络的车辆换道轨迹评价方法研究[D]. 北京: 北京工业大学, 2020.

    ZHENG S X. Research on evaluation method of lane-changing trajectory based on recurrent neural network[D]. Beijing: Beijing University of Technology, 2020.
    [25]
    李慧轩. 基于驾驶行为动态获取的换道行为微观建模及仿真校验研究[D]. 北京: 北京交通大学, 2016.

    LI H X. Research on microscopic modeling and simulation validation of lane changing behavior based on dynamic acquisition of driving behavior[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese)
    [26]
    龙彦, 黄建玲, 赵晓华. 换道过程中驾驶人感知操作的模式发现与规则挖掘[J]. 交通运输系统工程与信息, 2021, 21 (3): 237-246. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103030.htm

    LONG Y, HUANG J L, ZHAO X H. Pattern discovery and rule mining of drivers' per ception and operation during lane changing process[J]. Journal of Transportation Systems Engineering and Infomation Technology, 2021, 21(3): 237-246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103030.htm
    [27]
    陈谊, 蔡进峰, 石耀斌, 等. 基于平行坐标的多视图协同可视分析方法[J]. 系统仿真学报, 2013, 25(1): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201301016.htm

    CHEN Y, CAI J F, SHI Y B, et al. Coordinated visual analytics method based on multiple views with parallel coordinates[J]. Journal of System Simulation, 2013, 25(1): 81-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201301016.htm
    [28]
    INSELBERG A. Parallel coordinates: A tool for visualizing multidimensional geometry[C]. The lst IEEE Conference on Visualization, San Francisco, CA, United States: IEEE, 1990
    [29]
    张信雪, 吕晓琪, 张继凯, 等. 基于平行坐标的航道规划可视化分析研究[J]. 海洋环境科学, 2019, 38(1): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ201901013.htm

    ZHANG X X, LYU X Q, ZHANG J K, et al. Visualization analysis of channel planning based on parallel[J]. Marine Environmental Science, 2019, 38(1): 84-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ201901013.htm
    [30]
    孙玮. 基于平行坐标可视化的滑坡预报预警研究[D]. 武汉: 武汉大学, 2013.

    SUN W. Research on landslides early warning based on parallel coordinate visualization[D]. Wuhan: Wuhan University, 2013. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (929) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return