Citation: | LIU Xingliang, SHAN Jue, LIU Tangzhi, RAO Chang, LIU Tong. Real-time Forecast Models for Traffic Accidents on Expressways Using Stability Coefficients of Traffic Flow[J]. Journal of Transport Information and Safety, 2022, 40(4): 71-81. doi: 10.3963/j.jssn.1674-4861.2022.04.008 |
[1] |
MITCHELL T M. Machine learning: A guide to current research[M]. Boston: Springer, 2011.
|
[2] |
游锦明, 方守恩, 张兰芳, 等. 高速公路实时事故风险研判模型及可移植性[J]. 同济大学学报(自然科学版), 2019, 47(3): 347-352. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201903007.htm
YOU J M, FANG S E, ZHANG L F, et al. Real-time crash prediction models and transferability analysis on freeways[J]. Journal of Tongji University (Natural Science), 2019, 47 (3): 347-352. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201903007.htm
|
[3] |
CHEN F, CHEN S, MA X. Analysis of hourly crash likelihood using unbalanced panel data mixed logit model and real-time driving environmental big data[J]. Journal of Safety Research, 2018, 65: 153-159. doi: 10.1016/j.jsr.2018.02.010
|
[4] |
曾强, 苏绮琪, 郑嘉仪, 等. 基于贝叶斯时空建模的高速公路事故黑点判别[J]. 交通信息与安全, 2020, 38(6): 87-94. doi: 10.3963/j.jssn.1674-4861.2020.06.012
ZENG Q, SU Q Q, ZHENG J Y, et al. Identification of freeway crash hotspots based on bayesian spacetime modeling[J]. Journal of Transport Information and Safety, 2020, 38(6): 87-94. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2020.06.012
|
[5] |
XU C, LIU P, WAND W, et al. Evaluation of the impacts of traffic states on crash risks on freeways[J]. Accident Analysis & Prevention, 2012, 47(1): 162-171. http://search.ebscohost.com/login.aspx?direct=true&db=buh&AN=73569892&site=ehost-live
|
[6] |
WANG J, ZHENG Y, LI X, et al. Driving risk assessment using near-crash database through data mining of tree-based model[J]. Accident Analysis & Prevention, 2015, 84: 54-64. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0001457515300129&originContentFamily=serial&_origin=article&_ts=1492997092&md5=3c80968da0a43c3d2404eab6f16f51ec
|
[7] |
OH C, PARK S, RITCHIE S G. A method for identifying rear-end collision risks using inductive loop detectors[J]. Accident Analysis & Prevention, 2006, 38(2): 295-301. http://www.onacademic.com/detail/journal_1000034577385310_f6a9.html
|
[8] |
THOEFILATOS A, CHEN C, ANTONIOU C. Comparing machine learning and deep learning methods for real-time crash prediction[J]. Transportation Research Record, 2019, 2673(8): 169-178. doi: 10.1177/0361198119841571
|
[9] |
赵海涛, 程慧玲, 丁仪, 等. 基于深度学习的车联边缘网络交通事故风险预测算法研究[J]. 电子与信息学报, 2020, 42(1): 50-57. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202001006.htm
ZHAO H T, CHENG H L, DING Y, et al. Research on traffic accident risk prediction algorithm based on deep learning in car link edge network[J]. Acta Electronica Sinica, 2020, 42(1): 50-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202001006.htm
|
[10] |
HOSSAIN M, ABDEL-ATY M, QUDDUS M A, et al. Real-time crash prediction models: State-of-the-art, design pathways and ubiquitous requirements[J]. Accident Analysis & Prevention, 2019(124): 66-84. http://www.xueshufan.com/publication/2910624182
|
[11] |
SUN J, SUN J. A dynamic Bayesian network model for real-time crash prediction using traffic speed conditions data[J]. Transportation Research Part C: Emerging Technologies, 2015(54): 176-186. http://www.researchgate.net/profile/Jie_Sun50/publication/274405799_A_dynamic_Bayesian_network_model_for_real-time_crash_prediction_using_traffic_speed_conditions_data/links/566666e808ae418a786f445e.pdf
|
[12] |
YASMIN S, ELURU N, WANG L, et al. A joint framework for static and real-time crash risk analysis[J]. Analytic Methods in Accident Research, 2018, 18: 45-56. doi: 10.1016/j.amar.2018.04.001
|
[13] |
PANDE A, ABDEL-ATY M. Comprehensive analysis of the relationship between real-time traffic surveillance data and rear-end crashes on freeways[J]. Transportation Research Record, 2006, 1953(1): 31-40. doi: 10.1177/0361198106195300104
|
[14] |
XU C C, WANG W, LIU P. A genetic programming model for real-time crash prediction on freeways[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(2): 574-586. doi: 10.1109/TITS.2012.2226240
|
[15] |
AHMED M M, ABDEL-ATY M. The viability of using automatic vehicle identification data for real-time crash prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(2): 459-468. doi: 10.1109/TITS.2011.2171052
|
[16] |
WANG L, ABDEL-ATY M, SHI Q, et al. Real-time crash prediction for expressway weaving segments[J]. Transportation Research Part C: Emerging Technologies, 2015(61): 1-10. http://www.researchgate.net/profile/Ling_Wang43/publication/284068999_Real-time_crash_prediction_for_expressway_weaving_segments/links/5733520d08ae9f741b2610e1.pdf
|
[17] |
程国柱, 刚杰, 程瑞, 等. 公路货运通道路侧事故多发路段判别与线形设计[J]. 哈尔滨工业大学学报, 2022, 54 (3): 131-138. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202203015.htm
CHEN G Z, GANG J, CHEN R, et al. Identification of roadside accident blackspot and geometric design of dedicated freight corridor on highways[J]. Journal of Harbin Institute of Technology, 2022, 54(3): 131-138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202203015.htm
|
[18] |
高珍, 高屹, 余荣杰, 等. 连续数据环境下的道路交通事故风险预测模型[J]. 中国公路学报, 2018, 31(4): 280-287. doi: 10.3969/j.issn.1001-7372.2018.04.032
GAO Z, GAO Y, YU R J, et al. Road crash risk prediction model for continuous streaming data environment[J]. China Journal of Highway and Transport, 2018, 31(4): 280-287. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.04.032
|
[19] |
沈静. 高速公路事故风险实时预测及事后时空影响分析[D]. 南京: 东南大学, 2017.
SHEN J. Real-time risk prediction and spatiotemporal impact analysis for freeway accident[D]. Nanjing: Southeast University, 2017. (in Chinese)
|
[20] |
姜正申, 刘宏志, 付彬, 等. 集成学习的泛化误差和AUC分解理论及其在权重优化中的应用[J]. 计算机学报, 2019, 42(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201901001.htm
JIANG Z S, LIU H Z, FU B, et al. Decomposition theories of generalization error and AUC in ensemble learning with application in weight optimization[J]. Chinese Journal of Computers, 2019, 42(1): 1-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201901001.htm
|
[21] |
王文宪, 况瑢, 郭经纬, 等. 铁路专用线危险货物运输安全指标属性约简研究[J]. 中国安全生产科学技术, 2017, 13 (11): 59-65. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201711011.htm
WANG W X, KUANG R, GUO J W, et al. Research on attribute reduction for safety indexes of dangerous goods transportation in special railway[J]. Journal of Safety Science and Technology, 2017, 13(11): 59-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201711011.htm
|
[22] |
石宁宁. 驾驶员事故频次分布及其影响因素分析[D]. 北京: 北京交通大学, 2018.
SHI N N. Drivers' accident frequency distribution and its influencing factors[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese)
|
[23] |
THEOFILATOS A. Incorporating real-time traffic and weather data to explore road accident likelihood and severity in urban arterials[J]. Journal of Safety Research, 2017(61): 9-21. http://www.onacademic.com/detail/journal_1000039838751910_a13a.html
|
[24] |
ABDEL-ATY M, HASSAN H, AHMED M, et al. Real-time prediction of visibility related crashes[J]. Transportation Research Part C: Emerging Technologies, 2012(24): 288-298. http://www.sciencedirect.com/science/article/pii/S0968090X12000514
|
[25] |
LIU X L, XU J L, DONG Y P, et al. Defining highway node acceptance capacity (HNAC): Theoretical analysis and data simulation[J]. Journal of Advanced Transportation, 2020, 2020: 8939621. http://www.researchgate.net/publication/338613933_defining_highway_node_acceptance_capacity_hnac_theoretical_analysis_and_data_simulation
|
[26] |
SHANG W Q, HUANG H K, ZHU H B, et al. A novel feature selection algorithm for text categorization[J]. Expert Systems with Applications, 2007, 33(1): 1-5. doi: 10.1016/j.eswa.2006.04.001
|
[27] |
杨杰明. 文本分类中文本表示模型和特征选择算法研究[D]. 长春: 吉林大学, 2013.
YANG J M. The research of text representation and feature selection in text categorization[D]. Changchun: Jilin University, 2013. (in Chinese)
|