Volume 40 Issue 5
Nov.  2022
Turn off MathJax
Article Contents
GAO Qiannan, GUO Runhua, GENG Jingjie. A Review on Anti-skid Performance Based on Fractal Characteristics of the Texture of Asphalt Pavement[J]. Journal of Transport Information and Safety, 2022, 40(5): 12-22. doi: 10.3963/j.jssn.1674-4861.2022.05.002
Citation: GAO Qiannan, GUO Runhua, GENG Jingjie. A Review on Anti-skid Performance Based on Fractal Characteristics of the Texture of Asphalt Pavement[J]. Journal of Transport Information and Safety, 2022, 40(5): 12-22. doi: 10.3963/j.jssn.1674-4861.2022.05.002

A Review on Anti-skid Performance Based on Fractal Characteristics of the Texture of Asphalt Pavement

doi: 10.3963/j.jssn.1674-4861.2022.05.002
  • Received Date: 2022-03-16
    Available Online: 2022-12-05
  • Texture morphology of asphalt pavement is an important indicator of the anti-skid performance of asphalt pavement. Meanwhile, pavement texture has its fractal characteristics. Therefore, it is important to study the correlation between pavement texture and anti-skid performance by quantifying its texture with fractal properties. Single and multi-fractal properties of pavement texture and aggregate texture are studied and summarized at both the macroscopic and microscopic levels. The applications of fractal theory in the design of anti-skid gradations and selection of anti-skid aggregate for pavements are analyzed. A variety of design of anti-skid gradation models based on the fractal theory are summarized, and a new method of anti-skid aggregate selection for pavements based on the fractal theory is proposed. Finally, the utility of the fractal theory in combination with parametric statistical methods, mechanical analysis, and finite element simulation in the field of prediction of pavement anti-skid performance is compared and analyzed. Study results show that fractal feature analysis provides a new way for the description of pavement texture. However, the fractal analysis methods with a high precision are still the bottlenecks in this field. There are still limitations within the fractal models, in terms of their accuracy, standardization and systematization of their process. The application of fractal theory in combination with gradation design and aggregate selection is still in its preliminary stage. Therefore, it is recommended that design methods in engineering should be validated based on their usefulness in the practice. The performance of various types of prediction models for forecasting anti-skid performance based on texture fractal properties are compared. Study results indicate that the prediction mod-els based on finite element simulation can more accurately restore the tire-road contact state under complex conditions in practice, indicating that such prediction models have a good potential. Future research areas on anti-skid performance of asphalt pavement based on the fractal properties of texture are discussed and proposed, including the correlation between multi-scale texture fractal characteristics and anti-skid performance, criteria for specifying fractal parameters in the practice, and the development of intelligent anti-skid prediction system based on the fractal theory.

     

  • loading
  • [1]
    GUO F, PEI J, ZHANG J, et al. Study on the skid resistance of asphalt pavement: A state-of-the-art review and future prospective[J]. Construction and Building Materials, 2021(303): 124411.
    [2]
    YU M, YOU Z, WU G, et al. Measurement and modeling of skid resistance of asphalt pavement: A review[J]. Construction and Building Materials, 2020(260): 119878.
    [3]
    DONG S H, HAN S, ZHANG Q X, et al. Three-dimensional evaluation method for asphalt pavement texture characteristics[J]. Construction and Building Materials, 2021(287): 122966.
    [4]
    KOVAC M, BRNA M. The influence of the pavement surface texture on the pendulum test value[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1015(1): 012100. doi: 10.1088/1757-899X/1015/1/012100
    [5]
    李智, 王刚, 陈思宇. 基于分形理论的沥青混合料抗滑耐久性评价研究[J]. 科学技术与工程, 2014, 14(31): 302-307. doi: 10.3969/j.issn.1671-1815.2014.31.058

    LI Z, WANG G, CHEN S Y. Evalution of durability agains sliding on the asphalt mix fractal theroy[J]. Science Technology and Engineering, 2014, 14(31): 302-307. (in Chinese) doi: 10.3969/j.issn.1671-1815.2014.31.058
    [6]
    张令刚, 钱振东, 杨理广, 等. 沥青混凝土路面表面形貌及抗滑性能的分形表达研究[J]. 公路, 2013(5): 85-88. doi: 10.3969/j.issn.0451-0712.2013.05.020

    ZHANG L G, QIAN Z D, YANG L G, et al. Description of surface morphology and skid resistance of asphalt concrete pavement with fractal theory[J]. Highway, 2013(5): 85-88. (in Chinese) doi: 10.3969/j.issn.0451-0712.2013.05.020
    [7]
    LIU C, ZHAN Y, DENG Q, et al. An improved differential box counting method to measure fractal dimensions for pavement surface skid resistance evaluation[J]. Measurement, 2021(178): 109376
    [8]
    周兴林, 祝媛媛, 冉茂平, 等. 基于分段变维的沥青路表纹理磨光行为分析[J]. 中国公路学报, 2019, 32(4): 187-195+242. doi: 10.19721/j.cnki.1001-7372.2019.04.016

    ZHOU X L, ZHU Y Y, RAN M P, et al. Polishing behavior analysis of asphalt pavement surface texture based on piecewise variable dimension fractal[J]. China Journal of Highway and Transport, 2019, 32(4): 187-195+242. (in Chinese) doi: 10.19721/j.cnki.1001-7372.2019.04.016
    [9]
    MIAO Y, SONG P, GONG X. Fractal and multifractal characteristics of 3d asphalt pavement macrotexture[J]. Journal of Materials in Civil Engineering, 2014, 26(8): 04014033. doi: 10.1061/(ASCE)MT.1943-5533.0000912
    [10]
    钱振东, 薛永超, 张令刚. 沥青路面三维纹理分形维数及其抗滑性能[J]. 中南大学学报(自然科学版), 2016, 47(10): 3590-3596. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201610041.htm

    QIAN Z D, XUE Y C, ZHANG L G. 3-D textural fractal dimension and skid resistance of asphalt pavement[J]. Journal of Central South University (Science and Technology), 2016, 47(10): 3590-3596. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201610041.htm
    [11]
    冉茂平, 肖旺新, 周兴林, 等. 基于三维分形维数的沥青路面抗滑性能研究[J]. 公路交通科技, 2016, 33(2): 28-32. doi: 10.3969/j.issn.1002-0268.2016.02.005

    RAN M P, XIAO W X, ZHOU X L, et al. Research of skid resistance of asphalt pavement based on 3D fractal dimension[J]. Journal of Highway and Transportation Research and Development, 2016, 33(2): 28-32. (in Chinese) doi: 10.3969/j.issn.1002-0268.2016.02.005
    [12]
    YEGGONI M, BUTTON J W, ZOLLINGER D G. Fractals of aggregates correlated with creep in asphalt concrete[J]. Journal of Transportation Engineering, 1996, 122(1): 22-28. doi: 10.1061/(ASCE)0733-947X(1996)122:1(22)
    [13]
    张肖宁, 孙杨勇. 粗集料表面纹理轮廓线分形分析及不同维数算法探讨比较[J]. 公路, 2010(12): 124-128. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201012027.htm

    ZHANG X N, SUN Y Y. Analysis of fractal of micro-structure curve of coarse aggregate and contrast between different dimension algorithms[J]. Highway, 2010(12): 124-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201012027.htm
    [14]
    ZHANG X, TAO L, LIU C, et al. Research on skid resistance of asphalt pavement based on three-dimensional laser-scanning technology and pressure-sensitive film[J]. Construction and Building Materials, 2014(69): 49-59.
    [15]
    李智, 刘涛, 刘春雷. 基于激光和真空镀膜技术的集料细观构造评价[J]. 华南理工大学学报(自然科学版), 2013, 41(2): 88-93. doi: 10.3969/j.issn.1000-565X.2013.02.014

    LI Z, LIU T, LIU C L. Microscopic structure evaluation of aggregates based on laser measurement and vacuum coating technology[J]. Journal of South China University of Technology(Natural Science Edition), 2013, 41(2): 88-93. (in chinese) doi: 10.3969/j.issn.1000-565X.2013.02.014
    [16]
    孙杨勇. 粗集料表面微观构造分形性质探讨与沥青路面抗滑性能关系研究[D]. 广州: 华南理工大学, 2010.

    SUN Y Y. Research on the fractal nature of the surface micro-structure of coarse aggregate and the relationship with the anti-slide performance of asphalt pavement[D]. Guangzhou: South China University of Technology, 2010. (in Chinese)
    [17]
    QUAN W, WANG H, LIU X, et al. Multi-fractal analysis for pavement roughness evaluation[J]. Procedia-social and Behavioral Sciences, 2013(96): 2684-2691.
    [18]
    王维锋, 严新平, 肖旺新, 等. 路面纹理的多重分形特征描述与识别方法[J]. 交通运输工程学报, 2013, 13(3): 15-21. doi: 10.3969/j.issn.1671-1637.2013.03.003

    WANG W F, YAN X P, XIAO W X, et al. Approach of multifractal feature description and recognition for pavement texture[J]. Journal of Traffic and Transportation Engineering, 2013, 13(3): 15-21. (in Chinese) doi: 10.3969/j.issn.1671-1637.2013.03.003
    [19]
    肖神清. 沥青路表纹理多重分形表征及其磨光行为研究[D]. 武汉: 武汉科技大学, 2018.

    XIAO S Q. Multifractal characterization of surface texture on asphalt pavement and its polishing behavior[D]. Wuhan: Wuhan University of Science and Technology, 2018. (in Chinese)
    [20]
    周兴林, 肖神清, 刘万康, 等. 沥青路面表面纹理的多重分形特征及其磨光行为[J]. 东南大学学报(自然科学版), 2018, 48(1): 175-180. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201801027.htm

    ZHOU X L, XIAO S Q, LIU W K, et al. Multifractal characteristics and polishing behaviors of surface texture on asphalt pavement[J]. Journal of Southeast University(Natural Science Edition), 2018, 48(1): 175-180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201801027.htm
    [21]
    周兴林, 李庆丰, 肖神清. 基于多重分形的沥青混合料空隙分布特征分析[J]. 重庆交通大学学报(自然科学版), 2018, 37(12): 29-35. doi: 10.3969/j.issn.1674-0696.2018.12.05

    ZHOU X L, LI Q F, XIAO S Q. Voids distribution characteristics of asphalt mixture based on multifractal theory[J]. Journal of Chongqing Jiaotong University(Natural Science), 2018, 37(12): 29-35. (in Chinese) doi: 10.3969/j.issn.1674-0696.2018.12.05
    [22]
    RAN M P, XIAO S Q, ZHOU X L, et al. Evaluation of segregation in asphalt pavement surface using concave multifractal distribution[J]. Journal of Testing and Evaluation, 2018(46): 20160616.
    [23]
    XIAO S Q, TAN Y Q, XING C, et al. Scale demarcation of self-affine surface of coarse aggregate and its relationship with rubber friction[J]. Road Materials and Pavement Design, 2021, 22(8): 1842-1859. doi: 10.1080/14680629.2020.1728365
    [24]
    周兴林, 肖神清, 肖旺新, 等. 粗集料表面纹理粗糙度的多重分形评价[J]. 华中科技大学学报(自然科学版), 2017, 45(2): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201702006.htm

    ZHOU X L, XIAO S Q, XIAO W X, et al. Multi-fractal evaluation on roughness of coarse aggregate surface texture[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(2): 29-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201702006.htm
    [25]
    杨瑞华, 许志鸿. 密级配沥青混合料集料分形分维与路用性能的关系[J]. 土木工程学报, 2007(3): 98-103+109. doi: 10.3321/j.issn:1000-131X.2007.03.017

    YANG R H, XU Z H. Relationship between fractal dimension and road performance of dense-gradation asphalt mixture[J]. Journal of Civil Engineering, 2007(3): 98-103+109. (in Chinese) doi: 10.3321/j.issn:1000-131X.2007.03.017
    [26]
    刘林. 沥青路表三维纹理构造与抗滑性能数值关系研究[D]. 乌鲁木齐: 新疆大学, 2019.

    LIU L. Numerical relation study on three-dimensional texture structure and skid resistance of road surface[D]. Urumqi: Xinjiang University, 2019. (in Chinese)
    [27]
    赵战利, 张争奇, 薛建设, 等. 基于分形理论的沥青混合料抗滑级配评价[J]. 长安大学学报(自然科学版), 2008(3): 6-10. doi: 10.3321/j.issn:1671-8879.2008.03.002

    ZHAO Z L, ZHANG Z Q, XUE J S, et al. Evaluation of skid resistance gradations of asphalt mixture based on fractal theory[J]. Journal of Chang'an University(Natural Science Edition), 2008(3): 6-10. (in Chinese) doi: 10.3321/j.issn:1671-8879.2008.03.002
    [28]
    童申家, 谢祥兵, 赵大勇. 沥青路面纹理分布的分形描述及抗滑性能评价[J]. 中国公路学报, 2016, 29(2): 1-7. doi: 10.3969/j.issn.1001-7372.2016.02.001

    TONG S J, XIE X B, ZHAO D Y. Fractal description of texture distribution and evaluation of skid-resistance performance for asphalt pavement[J]. China Journal of Highway and Transport, 2016, 29(2): 1-7. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.02.001
    [29]
    HOU Y, HUANG Y, SUN F, et al. Fractal analysis on asphalt mixture using a two-dimensional imaging technique[J]. Advances in Materials Science and Engineering, 2016(1): 1-7.
    [30]
    黄宝涛, 田伟平, 李家春, 等. 沥青路面抗滑性能定量评价的分形方法[J]. 中国公路学报, 2008, 21(4): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200804002.htm

    HUANG B T, TIAN W P, LI J C, et al. Fractal method basedon quantitative evaluation of asphalt pavement anti-slide performance[J]. China Journal of Highway and Transport, 2008, 21(4): 12-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200804002.htm
    [31]
    CHEN B, ZHANG X, YU J, et al. Impact of contact stress distribution on skid resistance of asphalt pavements[J]. Construction and Building Materials, 2017(133): 330-339.
    [32]
    甘新立, 张文利, 谢洪胜, 等. 抗滑集料颗粒形状及表面纹理特性分析[J]. 公路, 2021, 66(10): 321-325. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202110056.htm

    GAN X L, ZHANG W L, XIE H S, et al. Analysis of particle shape and surface texture characteristics of sliding resistan aggregate[J]. Highway, 2021, 66(10): 321-325. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202110056.htm
    [33]
    VILLANI M M, SCARPAS A, BONDT A, et al. Application of fractal analysis for measuring the effects of rubber polishing on the friction of asphalt concrete mixtures[J]. Wear, 2014(320): 179-188.
    [34]
    LIU J, GUAN B, CHEN H, et al. Dynamic model of polished stone value attenuation in coarse aggregate[J]. Materials, 2020, 13(8): 1875.
    [35]
    HU L, YUN D, LIU Z, et al. Effect of three-dimensional macrotexture characteristics on dynamic frictional coefficient of asphalt pavement surface[J]. Construction and Building Materials, 2016(126): 720-729.
    [36]
    LI L, WANG K C P, LI Q J. Geometric texture indicators for safety on AC pavements with 1 mm 3D laser texture data[J]. International Journal of Pavement Research and Technology, 2016, 9(1): 49-62.
    [37]
    石月晴. 基于图像处理的沥青路面抗滑性能研究[D]. 重庆: 重庆交通大学, 2019.

    SHI Y Q. Study on skid resistance of asphalt pavement based on image processing[D]. Chongqing: Chongqing Jiaotong University, 2019. (in Chinese)
    [38]
    刘梦梅. 沥青路面多参数优化IFI模型及其在长期抗滑性能评价中应用研究[D]. 西安: 长安大学, 2021.

    LIU M M. Study on the Multi-parameter improved IFI model and its application in long-term skid resistance performance evaluation of asphalt pavement[D]. Xi'an: Chang'an University, 2021. (in Chinese)
    [39]
    王元元. 沥青路面抗滑特性与其表面粗糙特性之关系研究[D]. 南京: 东南大学, 2017.

    WANG Y Y. Study on the relationship between skid resistance of asphalt pavement and its surface rough characteristics[D]. Nanjing: Southeast University, 2017. (in Chinese)
    [40]
    PERSSON B. Theory of rubber friction and contact mechanics[J]. Journal of Chemical Physics, 2007, 115(8): 3840-3861.
    [41]
    MOTAMEDI M, TAHERI S, SANDU C, et al. Characterization of road profiles based on fractal properties and contact mechanics[J]. Rubber Chemistry and Technology, 2017, 90(2): 405-427.
    [42]
    ASSI M A, KASSEM E, NIELSEN R. Using close-range photogrammetry to measure pavement texture characteristics and predict pavement friction[J]. Transportation Research Record Journal of the Transportation Research Board, 2020, 2674(10): 794-805.
    [43]
    ZHONG K, SUN M, LIU Z, et al. Research on dynamic evaluation model and early warning technology of anti-sliding risk for the airport pavement[J]. Construction and Building Materials, 2020(239): 117820.
    [44]
    陈嘉颖. 无人驾驶条件下沥青路面纹理识别和制动策略研究[D]. 南京: 东南大学, 2019.

    CHEN J Y. Asphalt pavement texture recognition and braking method for autonomous vehicle[D]. Nanjing: Southeast University, 2019. (in Chinese)
    [45]
    刘朝旭. 基于胎路耦合的湿滑沥青路面抗滑风险模型研究[D]. 重庆: 重庆交通大学, 2020.

    LIU Z X. Research on anti-skid risk model of wet asphalt pavement based on tire-road coupling[D]. Chongqing: Chongqing Jiaotong University, 2020. (in Chinese)
    [46]
    TAN T, XING C, TAN Y. Rubber friction on icy pavement: Experiments and modeling[J]. Cold Regions Science and Technology, 2020(174): 103022.
    [47]
    马彬. 车路协同动力学差异特性及轮胎印迹机理研究[D]. 长春: 吉林大学, 2014.

    MA B. A study on dynamics differences characteristics for vehicle-road collaborative and the mechanism of tire-road frictional drag[D]. Changchun: Jilin University, 2014. (in Chinese)
    [48]
    张伟光. 基于路表纹理的抗滑沥青混合料设计方法研究[D]. 南京: 东南大学, 2011.

    ZHANG W G. Research on design method of anti-skid asphalt mixture based on road surface texture[D]. Nanjing: Southeast University, 2011. (in Chinese)
    [49]
    杨发. 基于胎/路耦合的沥青路面抗滑性能研究[D]. 南京: 东南大学, 2014.

    YANG F. Analysis of asphalt pavement skid resistance based on tire-road coupling[D]. Nanjing: Southeast University, 2014. (in Chinese)
    [50]
    ZHU S, LIU X, CAO Q, et al. Numerical study of tire hydroplaning based on power spectrum of asphalt pavement and kinetic friction coefficient[J]. Advances in Materials Science and Engineering, 2017(1): 1-11.
    [51]
    黄晓明, 蒋永茂, 郑彬双, 等. 基于路表摩擦特性的无人驾驶车辆安全制动原理与方法[J]. 科学通报, 2020, 65(30): 3328-3340. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202030012.htm

    HUANG X M, JIANG Y M, ZHENG B S, et al. Theory and methodology on safety braking of autonomous vehicles based on the friction characteristic of road surface[J]. Chinese Science Bulletin, 2020, 65(30): 3328-3340. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202030012.htm
    [52]
    LIU X, CAO Q, WANG H, et al. Evaluation of vehicle braking performance on wet pavement surface using an integrated tire-vehicle modeling approach[J]. Transportation Research Record Journal of the Transportation Research Board, 2019, 2673(3): 295-307.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(3)

    Article Metrics

    Article views (883) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return