Volume 41 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
MA Qinglu, FU Binglin, MA Lian, LI Yangmei. A Method for Detecting Traffic Accidents on Highway Tunnel Sections Based on Abnormal Sound[J]. Journal of Transport Information and Safety, 2023, 41(1): 34-42. doi: 10.3963/j.jssn.1674-4861.2023.01.004
Citation: MA Qinglu, FU Binglin, MA Lian, LI Yangmei. A Method for Detecting Traffic Accidents on Highway Tunnel Sections Based on Abnormal Sound[J]. Journal of Transport Information and Safety, 2023, 41(1): 34-42. doi: 10.3963/j.jssn.1674-4861.2023.01.004

A Method for Detecting Traffic Accidents on Highway Tunnel Sections Based on Abnormal Sound

doi: 10.3963/j.jssn.1674-4861.2023.01.004
  • Received Date: 2022-03-07
    Available Online: 2023-05-13
  • In response to the need of effectively detecting traffic accidents in highway tunnel sections, a novel acoustic detection method is introduced, so as to study an intelligent way for detecting traffic accidents in tunnels based on abnormal sound. By analyzing the issues of using Short-Term Energy (STE) and Mel-scale Frequency Cepstral Coefficients (MFCC) in identifying accident sections and interfering with precision, a modified fusion feature MFCCE is proposed to detect traffic accidents in tunnel sections. The new fusion feature of the MFCCE is obtained by extracting STE and MFCC features in virtue of Principal Component Analysis (PCA) to conduct feature fusion. Based on an observed traffic accident dataset, a sample dataset of noise experiments in two tunnels containing braking and collision sounds is developed, which corresponds to the traffic scenario of morning peak hours (from 07:00 to 08:00) and regular hours (from 12:00 to 13:00) respectively. Then an endpoint detection method is utilized to validate the proposed method, which is then compared with the other two methods (STE and MFCC). The Pearson correlation coefficient is determined as the final evaluation method, through which correlation coefficients r is used to compare the positive correlation of the three test results with the original samples. Experimental results show that the correlation coefficients of STE are 0.933 and 0.988 in the regular and morning peak hours respectively; the correlation coefficients of MFCC are 0.998 in both regular and morning peak hours, while the correlation coefficient of MFCCE (0.999) is higher than the other two detection methods in both regular and morning peak hours. The average correlation coefficients of MFCCE are 3.95% and 1.00% higher than the other two detection methods, respectively.

     

  • loading
  • [1]
    李雪玲. 高速公路长隧道车辆运行速度分析与安全措施研究[D]. 西安: 长安大学, 2012.

    LI X L. Analysis of vehicle operating speed and study on safety measures of freeway long tunnel[D]. Xi'an: Chang'an University, 2012. (in Chinese)
    [2]
    张璇, 唐进君, 黄合来, 等. 山区高速公路隧道路段与开放路段的事故影响因素分析[J]. 交通信息与安全, 2022, 40 (3): 10-18. doi: 10.3963/j.jssn.1674-4861.2022.03.002

    ZHANG X, TANG J J, HUANG H L, et al. An analysis of influential factors of crashes at tunnels and open sections of mountainous freeways[J]. Journal of Transport Information and Safety, 2022, 40(3): 10-18. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.03.002
    [3]
    陈湘生, 徐志豪, 包小华, 等. 中国隧道建设面临的若干挑战与技术突破[J]. 中国公路学报, 2020, 33(12): 1-14. doi: 10.3969/j.issn.1001-7372.2020.12.001

    CHEN X S, XU Z H, BAO X H, et al. Challenges and technological breakthroughs in tunnel construction in China[J]. China Journal of Highway and Transport, 2020, 33(12): 1-14. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.12.001
    [4]
    徐志刚, 李金龙, 赵祥模, 等. 智能公路发展现状与关键技术[J]. 中国公路学报, 2019, 32(8): 1-24. doi: 10.19721/j.cnki.1001-7372.2019.08.001

    XU Z G, LI J L, ZHAO X M, et al. A review on intelligent road and its related key technologies[J]. China Journal of Highway and Transport, 2019, 32(8): 1-24. (in Chinese) doi: 10.19721/j.cnki.1001-7372.2019.08.001
    [5]
    马庆禄, 邹政, 刘丰杰. 基于行车声音端点检测的交通量统计[J]. 科学技术与工程, 2020(4): 1676-1683. doi: 10.3969/j.issn.1671-1815.2020.04.058

    MA Q L, ZOU Z, LIU F J. Traffic statistics based on the endpoint detection of driving acoustic signals[J]. Science Technology and Engineering, 2020(4): 1676-1683. (in Chinese) doi: 10.3969/j.issn.1671-1815.2020.04.058
    [6]
    胡永. 地下隧道单向双车道双洞交通事故准确检测[J]. 计算机仿真, 2019, 36(6): 155-159. doi: 10.3969/j.issn.1006-9348.2019.06.031

    HU Y. One-way two-lane double tunnel tunnel traffic event detection simulation[J]. Computer Simulation, 2019, 36(6): 155-159. (in Chinese) doi: 10.3969/j.issn.1006-9348.2019.06.031
    [7]
    阳国清, 莫鸿强, 李文, 等. 连续语音流中咳嗽信号的端点检测[J]. 生物医学工程学杂志, 2010, 27(3): 544-547, 555. https://www.cnki.com.cn/Article/CJFDTOTAL-SWGC201003015.htm

    YANG G Q, MO H Q, LI W, et al. The endpoint detection of cough signal in continuous speech[J]. Journal of Biomedical Engineering, 2010, 27(3): 544-547, 555. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWGC201003015.htm
    [8]
    高晗, 裴玉龙. 基于车辆噪音时域特征的交通量统计方法[J]. 公路交通科技, 2008(4): 113-116, 121. doi: 10.3969/j.issn.1002-0268.2008.04.023

    GAO H, PEI Y L. Statistic method on traffic volume based on vehicle's time-domain noise features[J]. Journal of Highway and Transportation Research and Development, 2008(4): 113-116, 121. (in Chinese) doi: 10.3969/j.issn.1002-0268.2008.04.023
    [9]
    何小华. 基于车辆运行噪声的交通量在线统计算法研究[D]. 长春: 东北师范大学, 2008.

    HE X H. Research of online statistical algorithm about traffic volume based on running vehicles noise[D]. Changchun: Northeast Normal University, 2008. (in Chinese)
    [10]
    马庆禄, 邹政. 1种识别重叠噪声的交通量检测算法[J]. 计算机应用研究, 2020, 37(4): 1069-1072, 1080. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202004022.htm

    MA Q L, ZOU Z. Traffic detection algorithm for identify overlapping noise[J]. Application Research of Computers, 2020, 37(4): 1069-1072, 1080. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202004022.htm
    [11]
    NOORALAHIYAN A Y, KIRBY H R, MCKEOWN D. Vehicle classification by acoustic signature[J]. Mathematical & Computer Modelling, 1998, 27(9-11): 205-214.
    [12]
    LEFEBVRE N, CHEN X D, BEAUSEROY P, et al. Traffic flow estimation using acoustic signal[J]. Engineering Applications of Artificial Intelligence, 2017, 64: 164-171. doi: 10.1016/j.engappai.2017.05.019
    [13]
    张宏睿, 马秀荣, 单云龙. 车站运行列车异音检测方法[J]. 计算机应用与软件, 2019, 36(8): 130-137, 171.

    ZHANG H R, MA X R, SHAN Y L. Abnormal sound detection method of trains running at stations[J]. Computer Applications and Software, 2019, 36(8): 130-137, 171. (in Chinese)
    [14]
    张璐璐, 陈耀武, 蒋荣欣. 智能监控前端系统中异常声音检测的实现[J]. 计算机工程, 2014, 40(1): 218-221, 227.

    ZHANG L L, CHEN Y W, JIANG R X. Implementation of abnormal sound detection in intelligent surveillance front-end system[J]. Computer Engineering, 2014, 40(1): 218-221, 227. (in Chinese)
    [15]
    王若平, 李仁仁, 陈达亮, 等. 基于改进小波包去噪与梅尔倒谱系数的低信噪比交通环境声音识别[J]. 科学技术与工程, 2019, 19(36): 290-295. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201936058.htm

    WANG R P, LI R R, CHEN D L, et al. Low signal to noise ratio traffic environment acoustic recognition based on improved wavelet packet denoising and Mel cepstrum coefficient[J]. Science Technology and Engineering, 2019, 19 (36): 290-295. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201936058.htm
    [16]
    吕霄云, 王宏霞. 基于MFCC和短时能量混合的异常声音识别算法[J]. 计算机应用, 2010, 30(3): 796-798. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201003063.htm

    LYU X Y, WANG H X. Abnormal audio recognition algorithm based on mfcc and short-term energy[J]. Journal of Computer Applications, 2010, 30(3): 796-798. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201003063.htm
    [17]
    毛锦, 李林聪, 刘凯, 等. 无人驾驶汽车行车环境下鲁棒性声学特征提取算法[J]. 中国公路学报, 2019, 32(6): 169-175. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906018.htm

    MAO J, LI L C, LIU K, et al. Robust acoustic feature extraction algorithm for driving environment of driverless cars[J]. China Journal of Highway and Transport, 2019, 32(6): 169-175. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906018.htm
    [18]
    韦娟, 张芃楠, 岳凤丽, 等. 基于PSO-PF算法的SVM识别方法及其在异常声音中的应用[J]. 北京邮电大学学报, 2019, 42(3): 58-63. https://www.cnki.com.cn/Article/CJFDTOTAL-BJYD201903009.htm

    WEI J, ZHANG P N, YUE F L, et al. Recognition and application of abnormal sound via SVM based on PSO-PF[J]. Journal of Beijing University of Posts and Telecommunications, 2019, 42(3): 58-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJYD201903009.htm
    [19]
    VIVEK T, SHIVKUMAR K, RAGHURAM K et al. Vehicular traffic density state estimation based on cumulative road acoustics[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(3): 1156-1166.
    [20]
    AMRIT S, CHIRANJEEV K. An approach to detect the accident in VANETs using acoustic signal[J]. Applied Acoustics, 2020(163): 107205.
    [21]
    胡涛, 张超, 程炳, 等. 卷积神经网络在异常声音识别中的研究[J]. 信号处理, 2018, 34(3): 357-367. https://www.cnki.com.cn/Article/CJFDTOTAL-XXCN201803013.htm

    HU T, ZHANG C, CHENG B, et al. Research on abnormal audio event detection based on convolutional neural networks[J]. Journal of Signal Processing, 2018, 34(3): 357-367. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXCN201803013.htm
    [22]
    KAUR A, SOOD N, AGGARWAL N, et al. Traffic state detection using smartphone based acoustic sensing[J]. Journal of Intelligent & Fuzzy Systems, 2017, 32(4): 3159-3166.
    [23]
    JADHAV P, SAWARKAR S D, PETE D J. Roadside acoustic signals based road traffic density estimation[C]. 4th International Conference on Computing Communication Control and Automation(ICCUBEA), Pune, India: IEEE, 2018.
    [24]
    SU Y, ZHANG K, WANG J, et al. Environment sound classification using a two-stream CNN based on decision-level fusion[J]. Sensors, 2019, 19(7): 1733.
    [25]
    柯炜, 张铭, 张铁成. 1种利用分布式传声器阵列的声源三维定位方法[J]. 声学学报, 2017, 42(3): 361-369. https://www.cnki.com.cn/Article/CJFDTOTAL-XIBA201703013.htm

    KE W, ZHANG M, ZHANG T C. Three-dimensional sound source localization using distributed microphone arrays[J]. Act Acistoca, 2017, 42(3): 361-369. https://www.cnki.com.cn/Article/CJFDTOTAL-XIBA201703013.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (975) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return