Volume 41 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
YANG Peihong, XU Yanjun. A Method for Predicting Speed of Vehicles on Expressways Based on a ST-GCAN Model[J]. Journal of Transport Information and Safety, 2023, 41(2): 95-102. doi: 10.3963/j.jssn.1674-4861.2023.02.010
Citation: YANG Peihong, XU Yanjun. A Method for Predicting Speed of Vehicles on Expressways Based on a ST-GCAN Model[J]. Journal of Transport Information and Safety, 2023, 41(2): 95-102. doi: 10.3963/j.jssn.1674-4861.2023.02.010

A Method for Predicting Speed of Vehicles on Expressways Based on a ST-GCAN Model

doi: 10.3963/j.jssn.1674-4861.2023.02.010
  • Received Date: 2022-02-28
    Available Online: 2023-06-19
  • The speed of vehicles on expressways is a significant indicator for describing the effectiveness and safety of road transportation system. Accurate prediction of vehicle speed on expressways can contribute to reduction of traffic accidents and improvement of the level of services. In this sense, a prediction method for vehicle speed, called ST-GCAN, is developed, which integrates graph convolutional neural network (GCN), long short-term memo-ry network (LSTM) and attention mechanism into one model. Graph convolutional network is used to extract the spatial correlations of complex networks of expressways, long-short term memory network is used to extract the temporal correlations of historical data of vehicle speed, and attention mechanism is used to aggregate and analyze the correlation between historical data and predicted vehicle speed. In addition, the model employs dense connec-tions and layer normalization to ensure the integrity of information in the prediction model and to solve the problem of covariate shift during training. The model is tested with a dataset of vehicle speed on expressways of the City of Xining, Province of Qinghai, which contains a total of 94 777 hourly observations on 49 road sections at 8 toll sta-tions from May 1 to August 31, 2020. The ST-GCAN model predicts the vehicle speed in the next hour withthe mean absolute error (MAE) of 12.762%, root mean square error (RMSE) of 21.535%, and R2 of 0.651.Compared to the HA model and the ARIMA model, the MAE of the ST-GCAN model is reduced by 11.1% and 19.7%, respec-tively. Compared to other deep learning models, it is reduced by approximately 8.0% to 10%. In conclusion, the ST-GCAN model can accurately estimate vehicle speed on expressways and shall be able to meet the requirements of intelligent traffic control systems.

     

  • loading
  • [1]
    刘静, 关伟. 交通流预测方法综述[J]. 公路交通科技, 2004(3): 82-85. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200403022.htm

    LIU J, GUAN W. A summary of traffic flow forecasting meth-ods[J]. Journal of Highway Transportation Research Develop-ment, 2004(3): 82-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200403022.htm
    [2]
    袁健, 范炳全. 交通流短时预测研究进展[J]. 城市交通, 2012, 10(6): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJT201206015.htm

    YUAN J, FAN B Q. Synthesis of short-term traffic flow fore-casting research progress[J]. Urban Transport of China, 2012, 10(6): 73-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSJT201206015.htm
    [3]
    VLAHOGIANNI E I, GOLIAS J C, KARLAFTIS M G. Short term traffic forecasting: Overview of objectives and meth-ods[J]. Transport Reviews, 2004, 24(5): 533-557. doi: 10.1080/0144164042000195072
    [4]
    VAN LINT H, VAN HINSBERGEN C. Short-term traffic and travel time prediction models[J]. Artificial Intelligence Appli-cations to Critical Transportation Issues, 2012, 22(1): 22-41.
    [5]
    叶可江, 田科烺, 须成忠. 1种交通流量的预测方法、系统及终端设备: 201911279828. 4[P]. 2019-12-11.

    YE K J, TIAN K L, XU C Z. A method, system and terminal equipment of traffic flow prediction: 201911279828. 4[P]. 2019-12-11. (in Chinese)
    [6]
    SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mas-tering the game of go without human knowledge[J]. Nature, 2017, 550(7676): 354-359. doi: 10.1038/nature24270
    [7]
    PARK D, RILETT L R. Forecasting freeway link travel times with a multilayer feedforward neural network[J]. Comput-er-Aided Civil and Infrastructure Engineering, 2010, 10(5): 357-367.
    [8]
    HUANG W, SONG G, HONG H, et al. Deep architecture for traffic flow prediction: Deep belief networks with multitask learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(5): 2191-2201. doi: 10.1109/TITS.2014.2311123
    [9]
    LYU Y, DUAN Y, KANG W, et al. Traffic flow prediction with big data: A deep learning approach[J]. IEEE Transac-tions on Intelligent Transportation Systems, 2015, 16(2): 865-873.
    [10]
    陈钰, 张安勤, 许春晖. 基于时空依赖性和注意力机制的交通速度预测[J]. 计算机系统应用, 2021, 30(1): 200-206. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYY202101030.htm

    CHEN Y, ZHANG A Q, XU C H, Traffic speed prediction based on spatial-temporal dependency and attention mecha-nism[J]. Computer Systems & Applications, 2021, 30(1): 200-206(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTYY202101030.htm
    [11]
    CAO X, ZHONG Y, ZHOU Y, et al. Inter-active temporal re-current convolution network for traffic prediction in data cen-ters[J]. IEEE Access, 2017 (99): 1-11.
    [12]
    KE J, ZHENG H, YANG H, et al. Short-term forecasting of passenger demand under on-demand ride services: A spa-tio-temporal deep learning approach[J]. Transportation Re-search Part C: Emerging Technologies, 2017(85): 591-608.
    [13]
    YU H, WU Z, WANG S, et al. Spatiotemporal recurrent con-volutional networks for traffic prediction in transportation networks[J]. Sensors, 2017, 17(7): 1501. doi: 10.3390/s17071501
    [14]
    陈孟, 干可, 李凯, 等. 基于实时多模态时空数据的时空图卷积网络精准鲁棒交通流预测模型[J]. 公路交通科技, 2021, 38(8): 134-139, 158. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202108018.htm

    CHEN M, GAN K, LI K, et al. A spatial-temporal graph con-volutional network model for accurate and robust traffic flow prediction based on real-time multimodal spatial-temporal data[J]. Journal of Highway and Transportation Research and Development, 2021, 38(8): 134-139, 158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202108018.htm
    [15]
    张文松, 姚荣涵. 基于时空特性和组合深度学习的交通流参数估计[J]. 交通运输系统工程与信息, 2021, 21(1): 82-89. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202101014.htm

    ZHANG W S, YAO R H. Traffic flow parameters estimation based on spatio-temporal characteristics and hybrid deep learning[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(1): 82-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202101014.htm
    [16]
    徐先峰, 夏振, 赵龙龙. 基于组合模型的短时交通流预测方法[J]. 测控技术, 2021(3): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-IKJS202103022.htm

    XU X F, XIA Z, ZHAO L L. Short-term traffic flow predic-tion based on combined models[J]. Measurement & Control Technology, 2021(3): 117-122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-IKJS202103022.htm
    [17]
    郭芳. 基于轻量级深度学习框架的IP骨干网络流量实时预测研究[D]. 南京: 南京邮电大学, 2020.

    GUO F, Research on real-time traffic prediction of ip back-bone networks based on light-weighted deep learning frame-work[D]. Nanjing: Nanjing University of Posts, 2020. (in Chinese)
    [18]
    靳嘉曦, 牛文广, 陈炜青, 等. 1种交通数据预测方法、装置及交通工具控制方法: 201911114492. 6[P]. 2019-11-14.

    JIN J X, NIU W G, CHEN W Q, et al. A traffic data predic-tion method, device and vehicle control method: 201911114492. 6[P]. 2019-11-14. (in Chinese)
    [19]
    张浪文, 张旭, 谢巍, 等. 1种基于滑动窗口长短时记忆网络的交通流量预测方法: 202110326489. 1[P]. 2021-03-26.

    ZHANG L W, ZHANG X, XIE W, et al. A traffic flow pre-diction method based on sliding window long-term and short-term memory network: 202110326489. 1[P]. 2021-03-26. (in Chinese)
    [20]
    贾兴利, 李双庆, 杨宏志, 等. 基于ATT-LSTM模型的高速公路交通事件持续时长预测[J]. 交通信息与安全, 2022, 40(5): 61-69. doi: 10.3963/j.jssn.1674-4861.2022.05.007

    JIA X L, LI S Q, YANG H Z, et al. Prediction of the Dura-tion of Freeway Traffic Incidents Based on an ATT-LSTM Mode[J]. Journal of Transport Information and Safety, 2022, 40(5): 61-69(in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.05.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (770) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return