Citation: | CHENG Cheng, CHEN Wendong, MA Hongsheng, LIU Xize, CHEN Xuewu. A Method for Identifying Operation Zones of Free-floating Shared Bikes Based on Leiden Algorithm: A Case Study of the City of Nanjing[J]. Journal of Transport Information and Safety, 2023, 41(2): 103-111. doi: 10.3963/j.jssn.1674-4861.2023.02.011 |
[1] |
ZHU D, HUANG Z, SHI L, et al. Inferring spatial interaction patterns from sequential snapshots of spatial distributions[J]. International Journal of Geographical Information Science, 2018, 32(4): 783-805. doi: 10.1080/13658816.2017.1413192
|
[2] |
吴雪颖. 地铁站域无桩共享单车骑行时空间特征及其影响因素研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
WU X Y. Exploring the spatio-temporal characteristics and in-fluencing factors of sharing bike integrated with metro sta-tions[D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese)
|
[3] |
程小丹. 基于GWR的共享单车出行特征及影响因素空间异质性研究[D]. 西安: 长安大学, 2019.
CHENG X D. Spatial heterogeneity of influencing factors and characteristics of shared bicycle travel based on GWR[D]. Xi'an: Chang'an University, 2019. (in Chinese)
|
[4] |
崔树强, 朱佩娟, 张美芳, 等. 城市建成环境对共享单车使用空间分布的影响: 以长沙市为例[J]. 西南大学学报(自然科学版), 2020, 42(6): 89-99. https://www.cnki.com.cn/Article/CJFDTOTAL-XNND202006011.htm
CUI S Q, ZHU P J, ZHANG M F, et al. Influence of urban built environment on the spatial distribution of bike sharing use: The case of Changsha city[J]. Journal of Southwestern University(Natural Science Edition), 2020, 42(6): 89-99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNND202006011.htm
|
[5] |
袁朋伟, 董晓庆, 翟怀远, 等. 基于Nested Logit模型的共享单车选择行为研究[J]. 交通运输系统工程与信息, 2018, 18(5): 191-196. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201805028.htm
YUAN P W, DONG X Q, ZHAI H Y, et al. Research on choice behavior of bike-sharing based on nested logit mod-el[J]. Journal of Transportation Systems Engineering and In-formation Technology, 2018, 18(5): 191-196. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201805028.htm
|
[6] |
张昕明, 弓棣, 谢秉磊, 等. 计划行为理论视角下基于出行行为的公交防疫策略影响效果研究[J]. 交通信息与安全, 2021, 39(6): 117-125. doi: 10.3963/j.jssn.1674-4861.2021.06.014
ZHANG X M, GONG D, XIE B L, et al. A study of the effec-tiveness of epidemic prevention policies on public transit us-age based on the theory of planned behaviors[J]. Journal of Transport Information and Safety, 2021, 39(6): 117-125. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.06.014
|
[7] |
余周林. 共享单车影响下大学生出行行为分析及建模[D]. 西安: 长安大学, 2018.
YU Z L. Analysis and modeling of college students'travel be-havior under the influence of shared bicycles[D]. Xi'an: Chang'an University, 2018. (in Chinese)
|
[8] |
HUA M, CHEN X W, ZHENG S J, et al. Estimating the park-ing demand of free-floating bike sharing: A journey-da-ta-based study of Nanjing, China[J]. Journal of Cleaner Pro-duction, 2020, (244): 118764.
|
[9] |
陈文栋. 城市轨道交通站点共享自行车停放设施配置研究——以南京市为例[D]. 南京: 东南大学, 2019.
CHEN W D. Research on the configuration of bike-sharing parking facilities in urban rail transit stations: Taking Nanjing as an example[D]. Nanjing: Southeast University, 2019. (in Chinese)
|
[10] |
张芳, 陈彬, 汤杨华, 等. 基于兴趣点聚类的无桩共享单车时空模式分析[J]. 系统仿真学报, 2019, 31(12): 2829-2836. doi: 10.16182/j.issn1004731x.joss.19-FZ0327
ZHANG F, CHEN B, TANG Y H, et al. Spatio-temporal pat-tern analysis of free-floating bike sharing based on interest point clustering[J]. Journal of System Simulation, 2019, 31(12): 2829-2836. (in Chinese) doi: 10.16182/j.issn1004731x.joss.19-FZ0327
|
[11] |
郭彦茹, 罗志雄, 王家川, 等. 数据驱动的共享单车停放区规划方法研究[J]. 交通运输系统工程与信息, 2021, 21(6): 9-16. doi: 10.16097/j.cnki.1009-6744.2021.06.002
GUO Y R, LUO Z X, WANG J C, et al. Data-driven plan-ning and design for bike sharing parking spots[J]. Journal of Transportation Systems Engineering and Information Tech-nology, 2021, 21(6): 9-16. (in Chinese) doi: 10.16097/j.cnki.1009-6744.2021.06.002
|
[12] |
李福, 徐良杰, 陈国俊, 等. 共享单车用户骑行起讫点时空特征分析[J]. 交通信息与安全, 2022, 40(3): 146-153, 170. doi: 10.3963/j.jssn.1674-4861.2022.03.015
LI F, XU L J, CHEN G J, et al. An analysis of spatial-tempo-ral characteristics of origin and destination of shared-bike us-ers[J]. Journal of Transport Information and Safety 2022, 40(3): 146-153, 170. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.03.015
|
[13] |
杨俊闯, 赵超. K-means聚类算法研究综述[J]. 计算机工程与应用, 2019, 55(23): 7-14, 63. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201923003.htm
YANG J B, ZHAO C. Survey on k-means clustering algo-rithm[J]. Computer Engineering and Applications, 2019, 55(23): 7-14, 63.( in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201923003.htm
|
[14] |
周强. 复杂网络社区发现算法研究[D]. 成都: 电子科技大学, 2020.
ZHOU Q. Research on community discovery algorithms in complex networks[D]. Chengdu: University of Electronic Science and Technology, 2020. (in Chinese)
|
[15] |
王欢. 基于网络社团结构的轨道交通线网生成研究[D]. 北京: 北京交通大学, 2019.
WANG H. Rail transit network generation based on network community structure[D]. Beijing: Beijing Jiaotong Universi-ty, 2019. (in Chinese)
|
[16] |
XU J, LI A, LI D, et al. Difference of urban development in China from the perspective of passenger transport around Spring Festival[J]. Applied Geography, 2017(87): 85-96.
|
[17] |
余庆, 李玮峰, 杨东援. 基于手机信令数据的扬子江城市群空间联系结构分析[J]. 交通与运输, 2022, 38(3): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJT202203017.htm
YU Q, LI W F, YANG D Y. Analysis of spatial structure in Yang-tze-River urban agglomeration using mobile phone data [J]. Traffic & Transportation, 2022, 38(3): 81-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSJT202203017.htm
|
[18] |
ZHANG W, FANG C, ZHOU L, et al. Measuring megare-gional structure in the Pearl River Delta by mobile phone sig-naling data: A complex network approach[J]. Cities, 2020(104): 102809.
|
[19] |
柯文前, 陈伟, 杨青. 基于高速公路流的区域城市网络空间组织模式: 以江苏省为例[J]. 地理研究, 2018, 37(9): 1832-1847. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201809015.htm
KE W Q, CHEN W, YANG Q. Regional urban network space organization mode based on expressway flow: Taking Jiangsu Province as an example[J]. Geographical Research, 2018, 37(9): 1832-1847. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201809015.htm
|
[20] |
徐进, 邓乐龄. 基于Louvain算法的铁路旅客社会网络社区划分研究[J]. 山东农业大学学报(自然科学版), 2018, 49(4): 722-725. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHO201804035.htm
XU J, DENG L L. Study on community detection of railway passenger social networks based on louvain algorithm[J]. Journal of Shandong Agricultural University (Natural Sci-ence Edition), 2018, 49(4): 722-725. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCHO201804035.htm
|
[21] |
蒋云, 杨文东. 改进Louvain算法的多层航线网络社区划分[J]. 北京交通大学学报, 2022, 46(2): 89-97. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT202202011.htm
JIANG Y, YANG W D. Community detection of multi-layer air transport network with improved louvain algorithm[J]. Journal of Beijing Jiaotong University, 2022, 46(2): 89-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT202202011.htm
|
[22] |
YILDIRIMOGLU M, KIM J. Identification of communities in urban mobility networks using multi-layer graphs of net-work traffic[J]. Transportation Research Part C: Emerging Technologies, 2018(89): 254-267.
|
[23] |
KIM K. Identifying the structure of cities by clustering using a new similarity measure based on smart card data[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(5): 2002-2011.
|
[24] |
ZHANG Y, MARSHALL S, CAO M, et al. Discovering the evolution of urban structure using smart card data: The case of London[J]. Cities, 2021 (112): 103157.
|
[25] |
WU C, SMITH D, WANG M. Simulating the urban spatial structure with spatial interaction: A case study of urban polycentricity under different scenarios[J]. Computers, Environment and Urban Systems, 2021 (89): 101677.
|
[26] |
DASTJERDI A M, MORENCY C. Bike-sharing demand prediction at community level under covid-19 using deep learning[J]. Sensors, 2022, 22(3): 1060
|
[27] |
SONG J, ZHANG L, QIN Z, et al. A spatiotemporal dynamic analyses approach for dockless bike-share system[J]. Computers, Environment and Urban Systems, 2021 (85): 101566.
|
[28] |
TRAAG V A, WALTMAN L, VAN ECK N J. From louvain to leiden: Guaranteeing well-connected communities[J]. Scientific Reports, 2019, 9 (1): 5233.
|
[29] |
CHEN W D, CHEN X W, CHENG L, et al. Delineating borders of urban activity zones with free-floating bike sharing spatial interaction network[J]. Journal of Transport Geography, 2022 (104): 103442.
|
[30] |
中华人民共和国住房城乡建设部. 城市综合交通体系规划标准: GB/T 51328—2018[S]. 北京: 中国城市设计规划研究院, 2018.
Ministry of Housing and Urban Rural Development of the People's Republic of China. Standard for urban comprehensive transportation system planning: GB/T 51328—2018[S]. Beijing: China Academy of Urban Design and Planning, 2018. (in Chinese)
|
[31] |
中国城市规划设计研究院. 2021年中国主要城市共享单车/电单车骑行报告[EB/OL]. (2021-9)[2022-9-10].
China Academy of Urban Planning and Design. 2021 China principal cities sharing bikes and sharing electric bikes riding report[EB/OL]. (2021-9)[2022-9-10].
|
[32] |
CLAUSET A, NEWMAN M E J, MOORE C. Finding community structure in very large networks[J]. Physical Review E, 2004, 70 (6): 66111.
|
[33] |
BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008 (10): P10008.
|
[34] |
PONS P, LATAPY M. Computing communities in large networks using random walks[C]. International Symposium on Computer and Information Sciences, Istanbul, Turkey: Springer, 2005.
|