Citation: | CUI Wenyue, GU Yuanli, ZHAO Shengli, RUI Xiaoping. A Method of Predicting Short-term Traffic Flows Based on a DGC-GRU Model[J]. Journal of Transport Information and Safety, 2023, 41(2): 121-128. doi: 10.3963/j.jssn.1674-4861.2023.02.013 |
[1] |
陈喜群, 周凌霄, 曹震. 基于图卷积网络的路网短时交通流预测研究[J]. 交通运输系统工程与信息, 2020, 20(4): 49-55. doi: 10.16097/j.cnki.1009-6744.2020.04.008
CHEN X Q, ZHOU L X, CAO Z. Shortterm network-wide traffic prediction based on graph convolutional network[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(4): 49-55. (in Chinese) doi: 10.16097/j.cnki.1009-6744.2020.04.008
|
[2] |
ZHOU T, HAN G Q, XU X M, et al. A learningbased multimodel integrated framework for dynamic traffic flow forecasting[J]. Neural Processing Letters, 2019, 49(1): 407-430. doi: 10.1007/s11063-018-9804-x
|
[3] |
ZENG B, LI C. Improved multi-variable grey forecasting model with a dynamic backgroundvalue coefficient and its application[J]. Computers & Industrial Engineering, 2018, 118(4): 278-290.
|
[4] |
高洪波, 张登银. 基于分形与三次指数平滑的交通流量预测模型[J]. 南京邮电大学学报(自然科学版), 2018, 38(6): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-NJYD201806014.htm
GAO H B, ZHANG D Y. Traffic flow forecasting model based on fractal and cubic exponential smoothing[J]. Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition), 2018, 38(6): 63-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NJYD201806014.htm
|
[5] |
ZHOU T, JIANG D Z, LIN Z Z, et al. Hybrid dual Kalman filtering model for shortterm traffic flow forecasting[J]. IET Intelligent Transport Systems, 2019, 13(6): 1023-1032. doi: 10.1049/iet-its.2018.5385
|
[6] |
DING C, DUAN J X, ZHANG Y R, et al. Using an ARI-MA-GARCH modeling approach to improve subway shortterm ridership forecasting accounting for dynamic vola-tility[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(4): 1054-1064. doi: 10.1109/TITS.2017.2711046
|
[7] |
肖宇, 赵建有, 叱干都, 等. 基于XGBoost的短时出租车速度预测模型[J]. 交通信息与安全, 2022, 40(3): 163-170. doi: 10.3963/j.jssn.1674-4861.2022.03.017
XIAO Y, ZHAO J Y, CHI G D, et al. A shortterm prediction model for taxi speed based on XGBoost[J]. Journal of Transport Information and Safety, 2022, 40(3): 163-170. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.03.017
|
[8] |
CHENG S F, LU F, PENG P, et al. Short-term traffic forecast-ing: An adaptive ST-KNN model that considers spatial heterogeneity[J]. Computers, Environment and Urban Systems, 2018, 71(9): 186-198.
|
[9] |
傅成红, 杨书敏, 张阳. 改进支持向量回归机的短时交通流预测[J]. 交通运输系统工程与信息, 2019, 19(4): 130-134, 148. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201904019.htm
FU C H, YANG S M, ZHANG Y. Promoted shortterm traffic flow prediction model based on deep learning and sup-port vector regression[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(4): 130-134, 148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201904019.htm
|
[10] |
MA X L, YU H Y, WANG Y P, et al. Largescale transportation network congestion evolution prediction using deep learning theory[J]. Plos One, 2015, 10(3): 1-17.
|
[11] |
YU R, LI Y G, SHAHABI C, et al. Deep learning: A generic approach for extreme condition traffic forecasting[C]. The 2017 SIAM International Conference on Data Mining, Houston, United States: Society for Industrial and Applied Mathe-matics, 2017.
|
[12] |
FU R, ZHANG Z, LI L. Using LSTM and GRU neural net-work methods for traffic flow prediction[C]. 31st Youth Academic Annual Conference of Chinese Association of Automation(YAC), Wuhan, China: IEEE, 2016.
|
[13] |
倪庆剑, 彭文强, 张志政, 等. 基于信息增强传输的时空图神经网络交通流预测[J]. 计算机研究与发展, 2022, 59(2): 282-293. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ202202004.htm
NI Q J, PENG W Q, ZHANG Z Z, et al. Spatial-Temporal graph neural network for traffic flow prediction based on information enhanced transmission[J]. Journal of Computer Research and Development, 2022, 59(2): 282-293. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ202202004.htm
|
[14] |
CUI Z Y, HENRICKSON K, KE R M, et al. Traffic graph convolutional recurrent neural network: A deep learning framework for networkscale traffic learning and forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(11): 4883-4894.
|
[15] |
闫旭, 范晓亮, 郑传潘, 等. 基于图卷积神经网络的城市交通态势预测算法[J]. 浙江大学学报(工学版), 2020, 54(6): 1147-1155. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202006011.htm
YAN X, FAN X L, ZHENG C P, et al. Urban traffic flow prediction algorithm based on graph convolutional neural networks[J]. Journal of Zhejiang University(Engineering Sci-ence), 2020, 54(6): 1147-1155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202006011.htm
|
[16] |
谷振宇, 陈聪, 郑家佳, 等. 基于时空图卷积循环神经网络的交通流预测[J]. 控制与决策, 2022, 37(3): 645-653. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202203012.htm
GU Z Y, CHEN C, ZHENG J J, et al. Traffic flow prediction based on STG-CRNN[J]. Control and Decision, 2022, 37(3): 645-653. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202203012.htm
|
[17] |
SENG D W, LU F S, LIANG Z Y, et al. Forecasting traffic flows in irregular regions with multi-graph convolutional network and gated recurrent unit[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22 (9): 1179-1194.
|
[18] |
曾筠程, 邵敏华, 孙立军, 等. 基于有向图卷积神经网络的交通预测与拥堵管控[J]. 中国公路学报, 2021, 34(12): 239-248. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202112018.htm
ZENG Y C, SHAO M H, SUN L J, et al. Traffic prediction and congestion control based on directed graph convolution neural network[J]. China Journal of Highway and Transport, 2021, 34(12): 239-248. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202112018.htm
|
[19] |
DANEL T, SPUREK P, TABOR J, et al. Spatial graph convolutional networks[C]. International Conference on Neural Information Processing, Berlin, Germany: Springer, 2020.
|
[20] |
LI L, ZHU H G, WEN L B, et al. An approach of combining convolution neural network and graph convolution network to predict the progression of myopia[J]. Neural Process Lett, 2023, 55(1): 247-257.
|
[21] |
ALI A, ZHU Y M, ZAKARYA M. Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction[J]. Neural Networks, 2022, 145(1): 233-247.
|
[22] |
陈喜群, 曹震, 沈楼涛, 等. 融合路段传输模型和深度学习的城市路网短时交通流状态预测[J]. 中国公路学报, 2021, 34(12): 203-216. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202112015.htm
CHEN X Q, CAO Z, SHEN L T, et al. Short-term traffic-state prediction of urban road networks based on the fusion of a link-transmission model and deep learning[J]. China Journal of Highway and Transport, 2021, 34(12): 203-216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202112015.htm
|
[23] |
王康. 基于深度学习的城市短时交通流拥堵预测研究[D]. 武汉: 武汉大学, 2019.
WANG K. Research on urban shortterm traffic congestion prediction based on deep learning[D]. Wuhan: Wuhan University, 2019. (in Chinese)
|