Volume 41 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
JI Xiaofeng, KONG Xiaoli, CHEN Fang, HAO Jingjing, QIN Wenwen. A Forecasting Model of Short-term Traffic Flow on Expressways During Holidays Based on ETC Data and A-BiLSTM Neural Network Models[J]. Journal of Transport Information and Safety, 2023, 41(3): 166-174. doi: 10.3963/j.jssn.1674-4861.2023.03.018
Citation: JI Xiaofeng, KONG Xiaoli, CHEN Fang, HAO Jingjing, QIN Wenwen. A Forecasting Model of Short-term Traffic Flow on Expressways During Holidays Based on ETC Data and A-BiLSTM Neural Network Models[J]. Journal of Transport Information and Safety, 2023, 41(3): 166-174. doi: 10.3963/j.jssn.1674-4861.2023.03.018

A Forecasting Model of Short-term Traffic Flow on Expressways During Holidays Based on ETC Data and A-BiLSTM Neural Network Models

doi: 10.3963/j.jssn.1674-4861.2023.03.018
  • Received Date: 2022-03-29
    Available Online: 2023-09-16
  • Data collected from the electronic toll collection (ETC) gantry system can be used to support the short-term traffic flow forecasting for expressways during holidays. An Attention-BiLSTM (A-BiLSTM) hybrid model, composed of the attention mechanism and bidirectional long/short-term memory (BiLSTM) neural network, is proposed to address the issues of high nonlinearity and complexity within traffic flow forecasting tasks for holidays based on ETC gantry data. The input data is preprocessed to improve the effectiveness of model training. A sliding window method is used to generate samples of supervised learning to improve the efficiency of model training. Forward and backward time-dependent features of traffic flow data is extracted based on the BiLSTM neural network. An attention mechanism is introduced to dynamically weigh the importance of the information extracted from the neural network, enhancing the ability of nonlinear expression of features in hidden layers. A Bayesian optimization method is applied to tune hyperparameters of the model, which can improve the performance of the proposed model. The gantry data is collected from Baihanchang to Lashi on the Dali-Lijang Expressway, and is divided into the data with a time granularities of 5, 10, and 15 min for model development and validation. Experiment results show that: ①Compared with the prediction results of autoregressive moving average (ARIMA) model and support vector machine (SVM) model, the root mean square error (RMSE) of A-BiLSTM hybrid model is reduced by 73.3% and 49.1%, and mean absolute error (MAE) is reduced by 76.0% and 56.3% respectively, which shows that the proposed A-BiLSTM hybrid model has a better prediction capability and can be applied to real-world traffic operation and management. ②Compared with the BiLSTM model without the attention mechanism, the RMSE and MAE of A-BiLSTM hybrid model is reduced by 41.9% and 46.0%, respectively. ③Compared with the models developed using the traffic flow data with a time granularity of 10 and 15 min, the RMSE of the model developed with the data with a time granularity of 5 minutes decreases by 34.5% and 42.1%, respectively; and the MAE decreases by 39.9% and 46.3%, respectively. Therefore, it can be concluded that the A-BiLSTM model performs best with the input data with a time granularity of 5 min.

     

  • loading
  • [1]
    韩直, 徐冲聪, 韩嵩乔. 基于短时交通流预测的广域动态交通路径诱导方法[J]. 交通运输系统工程与信息, 2020, 20(1): 117-123+129. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202001020.htm

    HAN Z, XU C C, HAN S Q. Wide-area dynamic traffic path guidance method based on short-term traffic flow prediction[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(1): 117-123+129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202001020.htm
    [2]
    郭嘉宸, 杨宇燊, 王研, 等. 精细化短时交通流预测模型及迁移部署方案[J]. 计算机应用, 2022, 42(6): 1748-1755. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202206014.htm

    GUO J C, YANG Y S, WANG Y, et al. Refined short-term traffic flow prediction model and migration deployment plan[J]. Journal of Computer Applications, 2022, 42(6): 1748-1755. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202206014.htm
    [3]
    白伟华, 张传斌, 张塽旖, 等. 基于异常值识别卡尔曼滤波器的短期交通流预测[J]. 计算机应用研究, 2021, 38(3): 817-821. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202103034.htm

    BAI W H, ZHANG C B, ZHANG S Y, et al. Short-term traffic flow prediction based on outlier recognition Kalman filter[J]. Application Research of Computers, 2021, 38(3): 817-821. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202103034.htm
    [4]
    WILLIAMS B M, HOEL L A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results[J]. Journal of Transportation Engineering, 2003, 129(6): 664-672. doi: 10.1061/(ASCE)0733-947X(2003)129:6(664)
    [5]
    吴晋武, 张海峰, 冉旭东. 基于数据约减和支持向量机的非参数回归短时交通流预测算法[J]. 公路交通科技, 2020, 37(7): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202007017.htm

    WU J W, ZHANG H F, RAN X D. Nonparametric regression short-term traffic flow prediction algorithm based on data reduction and support vector machine[J]. Journal of Highway and Transportation Research and Development, 2020, 37(7): 129-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202007017.htm
    [6]
    ZHENG W Z, LI D H, SHI Q X. Short-term freeway traffic flow prediction: Bayesian combined neural network approach[J]. Journal of Transportation Engineering, 2006, 132(2): 114-121. doi: 10.1061/(ASCE)0733-947X(2006)132:2(114)
    [7]
    谢海红, 戴许昊, 齐远. 短时交通流预测的改进K近邻算法[J]. 交通运输工程学报, 2014, 14(3): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201403015.htm

    XIE H H, DAI X H, QI Y. Improved K-nearest neighbor algorithm for short-term traffic flow prediction[J]. Journal of Traffic and Transportation Engineering, 2014, 14(3): 87-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201403015.htm
    [8]
    温惠英, 张东冉. 基于Bi-LSTM模型的高速公路交通量预测[J]. 公路工程, 2019, 44(6): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201906009.htm

    WEI H Y, ZHANG D R. Highway traffic forecast based on Bi-LSTM model[J]. Road Construction, 2019, 44(6): 51-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201906009.htm
    [9]
    罗文慧, 董宝田, 王泽胜. 基于CNN-SVR混合深度学习模型的短时交通流预测[J]. 交通运输系统工程与信息, 2017, 17(5): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201705010.htm

    LUO W H, DONG B T, WANG Z S. Short-term traffic flow prediction based on CNN-SVR hybrid deep learning model[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(5): 68-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201705010.htm
    [10]
    戢晓峰, 戈艺澄. 基于深度学习的节假日高速公路交通流预测方法[J]. 系统仿真学报, 2020, 32(6): 1164-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ202006020.htm

    JI X F, GE Y C. Method for forecasting holiday expressway traffic flow based on deep learning[J]. Journal of System Simulation, 2020, 32(6): 1164-1171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ202006020.htm
    [11]
    刘群, 杨濯丞, 蔡蕾. 基于ETC门架数据的高速公路短时交通流预测[J]. 公路交通科技, 2022, 39(4): 123-130. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202204014.htm

    LIU Q, YANG Z C, CAI L. Prediction of short-term traffic flow on expressways based on ETC gantry data[J]. Journal of Highway and Transportation Research and Development, 2022, 39(4): 123-130. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202204014.htm
    [12]
    贾兴利, 李双庆, 杨宏志, 等. 基于ATT-LSTM模型的高速公路交通事件持续时长预测[J]. 交通信息与安全, 2022, 40(5): 61-69. doi: 10.3963/j.jssn.1674-4861.2022.05.007

    JIA X L, LI S Q, YANG H Z, et al. Prediction of the duration of freeway traffic incidents based on an ATT-LSTM model[J]. Journal of Transport Information and Safety, 2022, 40(5): 61-69. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.05.007
    [13]
    李桃迎, 王婷, 张羽琪. 考虑多特征的高速公路交通流预测模型[J]. 交通运输系统工程与信息, 2021, 21(3): 101-111. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103013.htm

    LI T Y, WANG T, ZHANG Y Q. Highway traffic flow forecast model considering multiple features[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(3): 101-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103013.htm
    [14]
    CAI L, LEI M, ZHANG S, et al. A noise-immune lstm network for short-term traffic flow forecasting[J]. Chaos, 2020, 30(2): 1-11.
    [15]
    LIU H, ZHANG X Y, YANG Y X, et al. Hourly traffic flow forecasting using a new hybrid modeling method[J]. Journal of Central South University, 2022, 29(4): 1389-1402.
    [16]
    FANG W, ZHUO W, YAN J, et al. Attention meets long short-term memory: a deep learning network for traffic flow forecasting[J]. Physica A: Statistical Mechanics and its Applications, 2022(587): 126485
    [17]
    SHI R, XU X Y, LI J M, et al. Prediction and analysis of train arrival delay based on XGBoost and Bayesian optimization[J]. Applied Soft Computing, 2021, 109: 107538.
    [18]
    KULSHRESTHA A, KRISHNASWAMY V, SHARMA M. Bayesian BILSTM approach for tourism demand forecasting[J]. Annals of tourism research, 2020, 83: 102925.
    [19]
    陆文琦, 芮一康, 冉斌, 等. 智能网联环境下基于混合深度学习的交通流预测模型[J]. 交通运输系统工程与信息, 2020, 20(3): 47-53. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202003008.htm

    LU W Q, RUI Y K, RAN B, et al. Traffic flow prediction model based on hybrid deep learning in intelligent network environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(3): 47-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202003008.htm
    [20]
    曾宪堂, 孙昊. 高速公路短时交通流预测方法对比分析[J]. 公路, 2022, 67(2): 366-370. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202202059.htm

    ZENG X T, SUN H. Comparative analysis of short-term traffic flow forecasting methods on expressways[J]. Highway, 2022, 67(2): 366-370. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202202059.htm
    [21]
    张维, 袁绍欣, 陶建军, 等. 基于多元因素的Bi-LSTM高速公路交通流预测[J]. 计算机系统应用, 2021, 30(6): 184-190. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYY202106026.htm

    ZHANG W, YUAN S X, TAO J J, et al. Bi-LSTM highway traffic flow prediction based on multiple factors[J]. Computer Systems & Applications, 2021, 30(6): 184-190. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTYY202106026.htm
    [22]
    陈治亚, 王小军. 基于多维度LSTM模型的短时交通流预测[J]. 铁道科学与工程学报, 2020, 17(11): 2946-2952. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202011028.htm

    CHEN Z Y, WANG X J. Short-term traffic flow prediction based on multidimensional LSTM model[J]. Journal of Railway Science and Engineering, 2020, 17(11): 2946-2952. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202011028.htm
    [23]
    LU H, GE Z, SONG Y, et al. A temporal-aware LSTM enhanced by loss-switch mechanism for traffic flow forecasting[J]. Neurocomputing, 2021(427): 169-178.
    [24]
    WANG K, MA C, QIAO Y, et al. A hybrid deep learning model with 1DCNN-LSTM-Attention networks for short-term traffic flow prediction[J]. Physica A: Statistical Mechanics and its Applications, 2021(583): 126293.
    [25]
    李明明, 雷菊阳, 赵从健. 基于LSTM-BP组合模型的短时交通流预测[J]. 计算机系统应用, 2019, 28(10): 152-156. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYY201910021.htm

    LI M M, LEI J Y, ZHAO C J. Short-term traffic flow forecasting based on LSTM-BP hybrid model[J]. Computer Systems Application, 2019, 28(10): 152-156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTYY201910021.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article Metrics

    Article views (577) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return