Volume 41 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
GAO Pei, ZHOU Ronggui, ZHOU Jian, ZHANG Xuran. A Parameter Calibration Method of Micro Traffic Simulation Based on Index Coupling[J]. Journal of Transport Information and Safety, 2023, 41(5): 107-114. doi: 10.3963/j.jssn.1674-4861.2023.05.011
Citation: GAO Pei, ZHOU Ronggui, ZHOU Jian, ZHANG Xuran. A Parameter Calibration Method of Micro Traffic Simulation Based on Index Coupling[J]. Journal of Transport Information and Safety, 2023, 41(5): 107-114. doi: 10.3963/j.jssn.1674-4861.2023.05.011

A Parameter Calibration Method of Micro Traffic Simulation Based on Index Coupling

doi: 10.3963/j.jssn.1674-4861.2023.05.011
  • Received Date: 2022-03-29
    Available Online: 2024-01-18
  • A method is proposed by considering multiple calibration indexes to optimize the parameter calibration of a traffic simulation model, improve the accuracy of the simulation model, and restore real road environments. Guided by simulation results, the calibration parameters for application-specific requirements are determined by sensitivity analysis. Considering the mutual influence of different calibration indexes, a simulation model is calibrated by simultaneously considering multiple calibration metrics which takes the variability of errors across distinct time intervals as the weights, and the objective function of the model calibration is developed based on six velocities. The model is implemented through secondary development of VISSIM software with MATLAB language. 143 groups of parameters are determined by two-stage entropy weight assignment and adaptive adjustment based on immune genetic algorithm. The effectiveness of the proposed method is validated by comparing with several baseline methods in three ways: uniform value, recursive value, and index coupling value approaches. The simulation results indicate a 50% decrease of squared errors exceeding 0.01 for the main line speed, and a 60% reduction for large trucks across various time periods. Regarding speed, the existing errors are 5% and 1.5% for main passenger cars and large trucks, reduced by 7% and 5.2%, respectively. The errors of estimated speeds for small trucks and ramps remains at approximately 6.5%; The speeds of main passenger cars and main trucks have smaller weights, ranging from 0.15 to 0.2, which indicates smaller variabilities of errors and smaller effects on the objective function. The results show that the proposed calibration method based on index coupling effectively takes into account both the in teraction of multiple indexes and the error of individual index, which mitigates the shortcoming of single-index calibration methods that leads to excessive errors of other indexes.

     

  • loading
  • [1]
    UDDIN M A. Calibration and validation of vissim model of an intersection with modified driving behavior parameters[J]. International Journal of Advanced Research, 2018, 6(12): 107-112. doi: 10.21474/IJAR01/8120
    [2]
    张清华. VISSIM微观交通仿真模型校正研究[D]. 北京: 北京交通大学, 2012.

    ZHANG Q H. Research on correction of VISSIM micro traffic simulation model[D]. Beijing: Beijing Jiaotong University, 2012. (in Chinese)
    [3]
    刘昕, 刘志远, 聂品等. 微观交通仿真模型参数标定研究综述[J]. 铁道科学与工程学报, 2022, 19(11): 3179-3189.

    LIU X, LIU Z Y, NIE P, et al. Survey of microscopic traffic simulation calibration methods[J]. Journal of Railway Science and Engineering, 2022, 19(11): 3179-3189. (in Chinese)
    [4]
    孙剑, 杨晓光, 刘好德. 微观交通仿真系统参数校正研究[J]. 系统仿真学报, 2007, 19(1): 48-50, 159.

    SUN J, YANG X G, LIU H D. Study on microscopic traffic simulation model systematic parameter calibration[J]. Journal of System Simulation, 2007, 19(1): 48-50, 159. (in Chinese)
    [5]
    王晨, 夏井新, 陆振波, 等. 基于微观仿真与极值理论的城市交叉口安全评价方法[J]. 中国公路学报, 2018, 31(4): 288-295, 303.

    WANG C, XIA J X, LU Z B, et al. Safety evaluation method based on traffic simulation and extreme value theory[J]. China Journal of Highway and Transport, 2018, 31(4): 288-295, 303. (in Chinese)
    [6]
    杨艳芳, 秦勇, 努尔兰-木汉. 基于SOGA的VISSIM仿真模型参数标定方法[J]. 交通运输系统工程与信息, 2017, 17(3): 91-97.

    YANG Y F, QIN Y, MUHAN N R L. VISSIM model calibration based on SOGA[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(3): 91-97. (in Chinese)
    [7]
    PAZ A, MOLANO V, MARTINEZ E, et al. Calibration of traffic flow models using a memetic algorithm[J]. Transportation Research Part C: Emerging Technologies, 2015, 55 : 432-443. doi: 10.1016/j.trc.2015.03.001
    [8]
    SHAHROKHI H, ALECSANDRU C, MAGHSOUDI R, et al. An efficient soft computing-based calibration method for microscopic simulation models[J]. Journal of Transportation Safety & Security, 2018, 10(4): 367-386.
    [9]
    CHEN Q Q, NI A N, ZHANG C Q, et al. A bayesian neural network based method to calibrate microscopic traffic simulators[J]. Journal of Advanced Transportation, 2021, 2021: 1-16.
    [10]
    刘晏尘. 基于机器学习的微观交通仿真模型参数标定方法研究[D]. 上海: 上海交通大学, 2020.

    LIU Y C. Calibrating microscopic traffic simulators method using machine learning algorithm[D]. Shanghai: Shanghai Jiaotong University, 2020. (in Chinese)
    [11]
    周晨静, 荣建, 郭琳科. 微观交通仿真模型参数标定结果取值方法研究[J]. 系统仿真学报, 2019, 31(12): 2802-2809.

    ZHOU C J, RONG J, GUO L K. Research on the value accessing method for calibrating micro traffic simulation model parameters[J]. Journal of System Simulation, 2019, 31 (12): 2802-2809. (in Chinese)
    [12]
    周晨静, 高亚聪, 荣建. 微观交通仿真模型参数标定方法改善研究[J]. 系统仿真学报, 2020, 32(11): 2112-2120.

    ZHOU C J, GAO Y C, RONG J. Research on improvement of parameters calibration method of microscopic traffic simulation model[J]. Journal of System Simulation, 2020, 32 (11): 2112-2120. (in Chinese)
    [13]
    高亚聪, 周晨静, 荣建. 基于行程时间累积分布曲线的微观交通仿真模型参数标定[J]. 公路交通科技, 2021, 38(4): 121-130.

    GAO Y C, ZHOU C J, RONG J. Parameter calibration of microscopic traffic simulation model based on cumulative distribution curve of travel time[J]. Journal of Highway and Transportation Researchand Development, 2021, 38(4): 121-130. (in Chinese)
    [14]
    ZHANG M, ZHOU C, ZHANG T, et al. Sensitivity analysis and selection of check index of signal intersection simulation model based on VISSIM[J]. Smart City Application, 2019, 2(5): 46-52.
    [15]
    周晨静, 荣建, 陈春安. 面向微观交通仿真实验的模型参数敏感性分析方法[J]. 北京工业大学学报, 2016, 42(11): 1728-1733.

    ZHOU C J, RONG J, CHEN C A. Parameter sensitivity analysis method for microscopic traffic simulation experiment[J]. Journal of Beijing University of Technology, 2016, 42(11): 1728-1733. (in Chinese)
    [16]
    CHEN Y H, WEN C, JIANG C Z, et al. Global sensitivity analysis of VISSIM parameters for project-level traffic emissions: A case study at a signalized intersection[J]. Environmental technology, 2021, 43(24): 1-25.
    [17]
    张靖思, 李振龙, 邢冠仰. 考虑动态车速的双周期干线信号协调控制多目标优化[J]. 交通信息与安全, 2021, 39(3): 60-67. doi: 10.3963/j.jssn.1674-4861.2021.06.008

    ZHANG J S, LI Z L, XING G Y. Multi-objective optimization for coordinated control of double-cycling arterial signals considering dynamic vehicle speeds[J]. Journal of Transport Information and Safety, 2021, 39(3): 60-67. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.06.008
    [18]
    卓亚娟, 贾志绚, 韩智强, 等. 基于组合赋权-TOPSIS法的城市平面立交交通组织评价研究[J]. 公路交通科技, 2022, 39 (9): 140-148. doi: 10.3969/j.issn.1002-0268.2022.09.018

    ZHUO Y J, JIA Z X, HAN Z Q, et al. Study on evaluation of urban plane interchange traffic organization based on combined weighting TOPSIS method[J]. Journal of Highway and Transportation Research and Development, 2022, 39(9): 140-148. (in Chinese) doi: 10.3969/j.issn.1002-0268.2022.09.018
    [19]
    李少博. 基于微观轨迹数据的山地城市干道复杂交织区车辆行驶行为研究[D]. 重庆: 重庆交通大学, 2019.

    LI S B. Study on vehicle driving behavior in complex interleaved area of main roads in mountainous cities based on micro-trajectory data[D]. Chongqin: Chongqin Jiaotong University, 2019. (in Chinese)
    [20]
    尹俊淞. 基于道路速度-排队长度的VISSIM参数标定建模与算法[J]. 交通运输工程与信息学报, 2019, 17(3): 144-151.

    YIN J S. Modeling and algorithm of VISSIM parameter calibration based on road speed-queue length[J]. Journal of Transportation Engineering and Information, 2019, 17(3): 144-151. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article views (392) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return