Volume 42 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
ZHANG Jian, WANG Shouyuan, ZHAO Yifei, LU Fei. Comprehensive Study on Route Flight Separation and Control Frequency of Urban UAV[J]. Journal of Transport Information and Safety, 2024, 42(1): 11-18. doi: 10.3963/j.jssn.1674-4861.2024.01.002
Citation: ZHANG Jian, WANG Shouyuan, ZHAO Yifei, LU Fei. Comprehensive Study on Route Flight Separation and Control Frequency of Urban UAV[J]. Journal of Transport Information and Safety, 2024, 42(1): 11-18. doi: 10.3963/j.jssn.1674-4861.2024.01.002

Comprehensive Study on Route Flight Separation and Control Frequency of Urban UAV

doi: 10.3963/j.jssn.1674-4861.2024.01.002
  • Received Date: 2023-08-16
    Available Online: 2024-05-31
  • Focusing on urban UAVs route flight, in order to ensure the safety of operation, it is necessary to equip the UAVs with appropriate separation. For the longitudinal flight scenario of the same route, a separation regulation model that considers the conflict frequency and collision probability and complies with the ICAO separation principle is investigated. By considering only the collision risk of UAVs positioning error, the longitudinal separation is obtained, which is used as the benchmark for the subsequent separation calculation. By considering the position uncertainty caused by both positioning error and velocity error, the collision risk along with the flight progress of UAVs is calculated. Increasing the longitudinal separation will delay the time to break through the target level of safety, but as the flight progresses, the collision risk will eventually overstep the target level of safety. Based on this finding, the method of UAV position regulation mechanism is proposed, and the distance between two aircraft is calibrated periodically. For a given target level of safety, a curve of longitudinal separation and position control frequency can be obtained, and a game relationship is found to exist between them. Implementation of high-frequency control, a smaller route separation is needed. Otherwise, the required route separation should be increased. In order to take into account, the double constraints of urban airspace and position control ability, a compromise scheme to select the separation and the control frequency at the maximum curvature is presented. It is found that the more stringent the safety target level requirements, the greater the required frequency of regulation and flight separation. The experimental analysis finds that when the target level of safety is 5×10-9 times/flight hour, the required control frequency is 87 times/hour and the required longitudinal separation is 90 m. At the same time, in the actual operating environment, the application of the above evaluation models and methods can objectively select the required separation and regulation frequency. The research in this paper can consider the safety of urban logistics UAV air operation and improve urban airspace utilization and delivery efficiency.

     

  • loading
  • [1]
    ICAO. Global air traffic management operational concept: DOC9854[S]. Montreal: ICAO, 2005.
    [2]
    REICH P G. Analysis of long-range air traffic systems: separation standards — Ⅰ[J]. Journal of Navigation, 1997, 50(3): 436-447. doi: 10.1017/S0373463300019068
    [3]
    BROOKER P. Lateral collision risk in air traffic track systems: a'Post-Reich'event model[J]. Journal of Navigation, 2003, 56(3): 399-409. doi: 10.1017/S0373463303002455
    [4]
    BROOKER P. Longitudinal collision risk for ATC track systems: a hazardous event model[J]. Journal of Navigation, 2006, 59(1): 55-70. doi: 10.1017/S0373463305003516
    [5]
    ICAO. RGCSP working group meeting: summary of discussions and conclusions[S]. Montreal: ICAO, 1995.
    [6]
    ICAO. Manual on airspace planning methodology for the determination of separation minima: DOC9689[S]. Montreal: ICAO, 1998.
    [7]
    ICAO. Manual on a 300 m(1 000 ft) vertical separation minimum between FL 290 and FL 410 inclusive: DOC9574[S]. Montreal: ICAO, 1998.
    [8]
    MAY G T. A method for predicting the number of near mid-air collisions in a defined airspace[J]. Journal of Navigation, 1971, 24(2), 204-218. doi: 10.1017/S0373463300018683
    [9]
    ENDOH S. Aircraft collision models[D]. Cambridge: Massachusetts Institute of Technology, 1982.
    [10]
    WEIBELRE, HANSMAN R J. Safety considerationsfor operation of unmanned aerial vehicles in the national airspace systems[D]. Cambridge: MassachusettsInstituteofTechnology, 2006.
    [11]
    COURHARBO A, SCHIOLER H. Probability of low-altitude midair collision between general aviation and unmanned aircraft[J]. Risk Analysis, 2019, 39(11): 2499-2513. doi: 10.1111/risa.13368
    [12]
    BROOKER P. Air traffic management accident risk. Part 1: The limits of realistic modelling[J]. Safety Science, 2006, 44(5): 419-450. doi: 10.1016/j.ssci.2005.11.004
    [13]
    PEREZ J A, GOMEZ C F, RODRIGUEZ A, et al. RPAS conflict-risk assessment in non-segregated airspace[J]. Safety Science, 2019, 111: 7-16. doi: 10.1016/j.ssci.2018.08.018
    [14]
    NETJASOV F. Framework for airspace planning and design based on conflict risk assessment: Part 1: Conflict risk assessment model for airspace strategic planning[J]. Transportation Research Part C: Emerging Technologies, 2012, 24: 190-212. doi: 10.1016/j.trc.2012.03.002
    [15]
    NETJASOV F. Framework for airspace planning and design based on conflict risk assessment: Part 2: Conflict risk assessment model for airspace tactical planning[J]. Transportation Research Part C: Emerging Technologies, 2012, 24: 213-226. doi: 10.1016/j.trc.2012.03.003
    [16]
    NETJASOV F, BABIC O. Framework for airspace planning and design based on conflict risk assessment: Part 3: Conflict risk assessment model for airspace operational and current day planning[J]. Transportation Research Part C: Emerging Technologies, 2013, 32: 21-47. doi: 10.1016/j.trc.2013.03.009
    [17]
    KALLINEN V, MCFADYEN A. Collision risk modeling and analysis for lateral separation to support unmanned traffic management[J]. Risk Analysis, 2022, 42(4): 854-881. doi: 10.1111/risa.13809
    [18]
    MCFADYENA, MARTINT, PEREZT. Low-level collisionrisk modelling for unmanned aircraft integration and management[C]. IEEE Aerospace Conference, Montana, USA: IEEE, 2018.
    [19]
    李亚飞, 刘明欢, 王莉莉. 建筑物影响下的无人机城区运行风险评估[J]. 中国安全科学学报, 2022, 32(7): 136-142. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202207020.htm

    LI Y F, LIU M H, WANG L L. Risk assessment of urban UAV operation under influence of buildings[J]. China Safety Science Journal, 2022, 32(7): 136-142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202207020.htm
    [20]
    任新惠, 程彩霞. 城市运行无人机第三方风险模型构建及应用[J]. 中国安全科学学报, 2021, 31(9): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202109004.htm

    REN X H, CHENG C X. Construction and application of third-party risk model for unmanned aerial vehicle operation in urban environment[J]. China Safety Science Journal, 2021, 31(9): 15-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202109004.htm
    [21]
    姚登凯, 马嘉呈, 赵顾颢. 军民航空域安全评估中的碰撞风险研究[J]. 安全与环境学报, 2017, 17(5): 1637-1641. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201705003.htm

    YAO D K, MA J C, ZHAO G H. Safety assessment for the collision risk between the civilian and military airplanes[J]. Journal of Safety and Environment, 2017, 17(5): 1637-1641. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201705003.htm
    [22]
    李琦, 甘旭升, 孙静娟, 等. 军航无人机与民航航班侧向碰撞风险评估[J]. 北京航空航天大学学报, 2021, 4(47): 724-730. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK202104007.htm

    LI Q, GAN X S, SUN J J, et al. Risk assessment of lateral collision between military UAV and civil aviation flight[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 4(47): 724-730. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK202104007.htm
    [23]
    王莉莉, 阳杰. 基于位置误差概率模型的物流无人机安全间隔评估方法研究[J]. 中国安全生产科学技术, 2022, 18(3): 184-192 https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK202203028.htm

    WANG L L, YANG J. Research on assessment method of safety separation for logistics UAVs based on position error probability model[J]. Journal of Safety Science and Technology, 2022, 18(3): 184-192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK202203028.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (61) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return