Volume 42 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
WANG Fangkai, YANG Xiaoguang, JIANG Zehao, LIU Congjian. Joint Optimization of Intersection Signal Control and Trajectory Control in Novel Heterogenous Traffic Flow Scenarios[J]. Journal of Transport Information and Safety, 2024, 42(1): 76-83. doi: 10.3963/j.jssn.1674-4861.2024.01.009
Citation: WANG Fangkai, YANG Xiaoguang, JIANG Zehao, LIU Congjian. Joint Optimization of Intersection Signal Control and Trajectory Control in Novel Heterogenous Traffic Flow Scenarios[J]. Journal of Transport Information and Safety, 2024, 42(1): 76-83. doi: 10.3963/j.jssn.1674-4861.2024.01.009

Joint Optimization of Intersection Signal Control and Trajectory Control in Novel Heterogenous Traffic Flow Scenarios

doi: 10.3963/j.jssn.1674-4861.2024.01.009
  • Received Date: 2023-06-28
    Available Online: 2024-05-31
  • In scenarios of mixed traffic flows consisting of human-driven vehicles (HDVs) and connected and autonomous vehicles (CAVs), existing intersection joint optimization methods place high computational demands on either centralized controllers or on-board computing units due to centralized and individual vehicle controls, respectively. This paper studies a joint optimization method that integrates the cell transmission model (CTM) with a bi-level programming model. This approach utilizes adjustable cell lengths to balance the computational requirements needed for signal control and CAV trajectory optimization, thereby flexibly allocating computational resources based on the capacities of central controllers and on-board computing units. The upper-level model predicts traffic flow states and optimizes signal control parameters by dynamically adjusting cell lengths to reduce the computational load on central controllers. The lower-level model uses these traffic state predictions to globally plan CAV trajectories, thereby enhancing intersection throughput. To improve solution optimality and real-time response, an iterative optimization algorithm that combines stochastic gradient descent with a genetic algorithm is employed to avoid local optima and enhance solution efficiency. Using data from the intersection of Xian-feng Middle Road and Chun-feng South Road in Wuxi City as an example, the optimization effects under different CAV penetration rates were verified. Results show: ① Compared to the baseline scenario, the proposed collaborative optimization scheme can reduce average vehicle travel time at the intersection by up to 8.09%, effectively reducing congestion propagation upstream. ② With CAV penetration rates of 30%, 60% and 90%, the optimization percentages are 2.51%, 5.08% and 7.88% respectively. ③ In scenarios where the inbound flow rate exceeds 3, 000 pcu/h, optimal signal control schemes can still be obtained within 100 seconds, supporting real-time optimization. The method can effectively improve urban traffic congestion and enhance the efficiency of intersections in novel mixed traffic flow scenarios.

     

  • loading
  • [1]
    李克强, 戴一凡, 李升波, 等. 智能网联汽车(ICV)技术的发展现状及趋势[J]. 汽车安全与节能学报, 2017, 8(1): 1-14. doi: 10.3969/j.issn.1674-8484.2017.01.001

    LI K Q, DAI Y F, LI S B, et al. Current status and trends of intelligent connected vehicle(ICV)technology[J]. Journal of Automobile Safety and Energy, 2017, 8(1): 1-14. (in Chinese) doi: 10.3969/j.issn.1674-8484.2017.01.001
    [2]
    赵祥模, 马万经, 俞春辉, 等. 道路交通控制系统发展与趋势展望[J]. 前瞻科技, 2023, 2(3): 58-66. https://www.cnki.com.cn/Article/CJFDTOTAL-QZKJ202303005.htm

    ZHAO X M, MA W J, YU C H, et al. Development and trend outlook of road traffic control systems[J]. Frontiers of Technology, 2023, 2(3): 58-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QZKJ202303005.htm
    [3]
    高金勇, 罗晟, 王歆远, 等. 面向网联自动驾驶混合交通流的高速公路流量控制方法[J]. 交通信息与安全, 2023, 41(5): 74-82 doi: 10.3963/j.jssn.1674-4861.2023.05.008

    GAO J Y, LUO S, WANG X Y, et al. A control method for mixed traffic flows with CAVs and HDVs on freeways[J]. Journal of Transport Information and Safety, 2023, 41(5): 74-82. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.05.008
    [4]
    LI J, YU C, SHEN Z, et al. A survey on urban traffic control under mixed traffic environment with connected automated vehicles[J]. Transportation Research Part C: Emerging Technologies, 2023, 154: 104258. doi: 10.1016/j.trc.2023.104258
    [5]
    彭显玥, 王昊. 交通分配与信号控制组合优化研究综述[J]. 交通运输工程与信息学报, 2023, 21(1): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC202301001.htm

    PENG X Y, WANG H. Review of combined optimization research on traffic allocation and signal control[J]. Journal of Traffic and Transportation Engineering and Information, 2023, 21(1): 1-18(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC202301001.htm
    [6]
    殷亚峰, 陆化普. 动态网络交通信号配时模型研究[J]. 公路交通科技, 1997, 14(3): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK703.002.htm

    YIN Y F, LU H P. Study on dynamic network traffic signal timing model[J]. Journal of Highway and Transportation Research and Development, 1997, 14(3): 11-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK703.002.htm
    [7]
    段力, 刘聪健, 方炽霖, 等. 信号控制与交通分配协同模型的自适应IOA算法[J]. 交通运输系统工程与信息, 2019, 19(6): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201906012.htm

    DUAN L, LIU C J, FANG C L, et al. Adaptive IOA algorithm for signal control and traffic distribution coordination model[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(6): 77-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201906012.htm
    [8]
    马万经, 李金珏, 俞春辉. 智能网联混合交通流交叉口控制: 研究进展与前沿[J]. 中国公路学报, 2023, 36(2): 22-40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202302002.htm

    MA W J, LI J J, YU C H. Intelligent connected mixed traffic flow intersection control: research progress and frontier[J]. China Journal of Highway and Transport, 2023, 36(2): 22-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202302002.htm
    [9]
    CHEN C, WANG J, XU Q, et al. Mixed platoon control of automated and human-driven vehicles at a signalized intersection: dynamical analysis and optimal control[J]. Transportation Research Part C: Emerging Technologies, 2021, 127: 103138.
    [10]
    冯红艳, 康雷雷, 刘澜. 智能网联环境下单交叉口车辆轨迹优化[J]. 交通运输工程与信息学报, 2024, 22(1): 25-38. https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC202401002.htm

    FENG H Y, KANG L L, LIU L. Trajectory optimization of vehicles at isolated intersection in a connected and automated environment[J]. Journal of Transportation Engineering and Information, 2024, 22(1): 25-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC202401002.htm
    [11]
    陈志军, 张晶明, 熊盛光, 等. 智能网联车辆生态驾驶研究现状及展望[J]. 交通信息与安全, 2022, 40(4): 13-25. doi: 10.3963/j.jssn.1674-4861.2022.04.002

    CHEN Z J, ZHANG J M, XIONG S G, et al. A review on research status and trends of eco-driving on intelligent connected vehicles [J]. Journal of Transport Information and Safety, 2022, 40(4): 13-25. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.04.002
    [12]
    MA C, YU C, YANG X. Trajectory planning for connected and automated vehicles at isolated signalized intersections under mixed traffic environment[J]. Transportation Research Part C: Emerging Technologies, 2021, 130: 103309.
    [13]
    王润民, 张心睿, 赵祥模, 等. 混行环境下网联信号交叉口车路协同控制方法[J]. 交通运输工程学报, 2022, 22(3): 139-151. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202203011.htm

    WANG R M, ZHANG X R, ZHAO X M, et al. Cooperative control method for vehicle-road coordination at connected signalized intersections in mixed traffic environments[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 139-151. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202203011.htm
    [14]
    孙伟, 张梦雅, 马成元, 等. 新型混合交通交叉口信号与车辆轨迹协同控制方法[J]. 交通运输系统工程与信息, 2023, 23(1): 97-105. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202301011.htm

    SUN W, ZHANG M Y, MA C Y, et al. New method of signal and vehicle trajectory coordination control at mixed traffic intersections[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(1): 97-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202301011.htm
    [15]
    LEVIN M W, BOYLES S D. A multiclass cell transmission model for shared human and autonomous vehicle roads[J]. Transportation Research Part C: Emerging Technologies, 2016, 62: 103-116.
    [16]
    吕彪, 谢智宇, 康宇翔, 等. 基于动态分流元胞传输模型的城市道路网络韧性评估[J]. 交通运输系统工程与信息, 2022, 22(6): 134-143, 211. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202206014.htm

    LYU B, XIE Z Y, KANG Y X, et al. Urban road network resilience assessment based on dynamic diversion cell transmission model[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(6): 134-143, 211. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202206014.htm
    [17]
    BIRDSALL M S. Traffic signal timing manual provides comprehensive resource for signal practices with far-reaching benefits[J]. ITE Journal, 2009, 79(4): 44-45.
    [18]
    JIANG R, WU Q, ZHU Z. Full velocity difference model for a car-following theory[J]. Physical Review E, 2001, 64(1): 17101.
    [19]
    TALEBPOUR A, MAHMASSANI H S. Influence of connected and autonomous vehicles on traffic flow stability and throughput[J]. Transportation Research Part C: Emerging Technologies, 2016, 71: 143-163.
    [20]
    MOHAJERPOOR R, RAMEZANI M. Mixed flow of autonomous and human-driven vehicles: Analytical headway modeling and optimal lane management[J]. Transportation Research Part C: Emerging Technologies, 2019, 109: 194-210.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (297) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return